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Abstract 

While there is a growing bilingual demographic in the United States, relatively little is known 

about treating this population should they experience a brain injury. This is a growing area of 

interest, as research has demonstrated that the acquisition of a second language promotes 

neuroplastic changes that then impact brain functioning pre- and post-brain-injury. Given 

bilingualism’s cognitive complexity, clinicians are left with challenges on how best to tailor 

treatment for brain-injured bilingual populations. Therefore, the focus of this review was to 

provide clinical recommendations to clinicians performing assessments with bilingual 

individuals with acquired brain injuries. The goal was for the guidelines provided to aid in the 

augmentation of appropriate strategies for neurorehabilitation to maximize linguistic, cognitive, 

and communicative improvement, leading to social readaptation and a better quality of life. 
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CHAPTER I: THE NEED FOR CULTURALLY APPROPRIATE TREATMENT FOR 

THE BILINGUAL POPULATION 

Although there is a growing prevalence of bilingual speakers and individuals with 

acquired brain injuries in the United States, relatively little is known about the impact 

bilingualism has on cognitive recovery following an acquired brain injury and the best clinical 

practices for neurorehabilitation. Therefore, understanding how the acquisition of a second 

language impacts cognitive functioning is a growing topic of interest. The brain has an 

extraordinary ability to reconfigure structurally and functionally in response to environmental, 

behavioral, and cognitive demands that result in differences in the utilization of brain regions 

(Sharma et al., 2013). This concept is known as neuroplasticity. Bilingualism is a specific 

experience that has been shown to produce neuroplastic anatomical changes (Crinion et al., 

2006; Jasińska & Petitto, 2013; Li & Grant, 2016; Mechelli et al., 2004) that facilitate 

differences in cognitive performance pre- and post-brain-injury (Faroqi-Shah et al., 2018; 

González et al., 2019; Ratiu & Azuma, 2017). Given the anatomical differences promoted by 

learning multiple languages, clinicians are faced with challenges on how best to provide the most 

appropriate treatment for bilingual clinical populations, particularly following an acquired brain 

injury. To treat clinical populations best, clinicians rely on their general understanding of 

structural and functional processes of the brain in normal and cognitively compromised 

populations while incorporating culturally appropriate research to tailor treatment to the 

individual (Johnson-Greene, 2018). Early intervention is essential following an acquired brain 

injury, as the literature has demonstrated that early intervention significantly improves outcomes 

compared to intervention implemented later (León-Carrión et al., 2013). The goal of this review 

was to begin the process of creating clinical guidelines that could be referenced when working 
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with bilinguals with acquired brain injuries. The development of clinical guidelines can aid in the 

augmentation of appropriate strategies for neurorehabilitation to maximize linguistic, cognitive, 

and communicative improvement, leading to better social readaptation and a better quality of 

life. 

Linguistic Diversey in the United States 

Recent census data in the United States provided support for the growing bilingual 

demographic. More specifically, the U.S. census data reported that approximately 42.1% of the 

U.S. population is part of a racial/ethnic minority group (U.S. Census Bureau, 2019), and the 

ratio is predicted to continue to grow. The Census Bureau has estimated that in 2012, 50.4% of 

children under the age of 1 in the United States belonged to racial and ethnic minority groups 

(U.S. Census Bureau, 2012). The increase of racial and ethnic minority groups has also 

contributed to the growth of linguistic diversity (“Language use and English-speaking ability,” 

2003). 

Among the linguistically diverse groups in the United States are bilinguals (“Language 

use and English-speaking ability,” 2003). However, while the bilingual demographic in the 

United States is rapidly increasing, there is no uniform definition for bilingualism in the 

literature (Costa & Sebastián-Gallés, 2014; Mindt et al., 2008). Early definitions have either been 

restrictive, requiring the mastery of two languages or more flexible, considering bilingualism as 

an experience of alternating the use of two languages irrespective of proficiency (Bloomfield, 

1935). While later definitions have begun to incorporate different levels of competency or 

proficiency when defining bilingualism. Some of the more common levels of bilingualism that 

have been identified and incorporated into the more recent definition of bilingualism include 

language proficiency (high or low proficiency), language competence (balanced or unbalanced), 
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age of acquisition (early or late), the order in which languages are acquired (simultaneous or 

sequentially), and the context of the acquisition of languages (natural setting or a formal or 

instructed setting). 

All of the above-mentioned levels of the bilingual experiences have made bilingualism a 

complex phenomenon, as the various factors have also been demonstrated to impact cognitive 

functioning in the bilingual brain to various degrees. Ultimately, given the vast diversity among 

bilinguals, researchers will need to explain all the different levels of bilingualism to understand 

its cognitive impact better. However, covering all bilingual groups is beyond the scope of this 

literature review; therefore, this review includes bilingual studies that categorize bilingualism in 

the more commonly observed factors: language proficiency (high or low proficiency), language 

competence (balanced or unbalanced), age of acquisition (early or late), the order in which 

languages are acquired (simultaneous or sequentially), and the context of the acquisition of 

languages (natural setting or a formal or instructed setting. 

Neuropsychology of Bilingualism 

The growing bilingual demographic in the United States has also led to a growing interest 

within the neuropsychology field, as research has demonstrated evidence of anatomical 

(Bialystok et al., 2010; Carlson & Meltzoff, 2008; Crinion et al., 2006; Jasińska & Petitto, 2013; 

Li & Grant, 2016; Mechelli et al., 2004), and functional (Berken et al., 2016) brain changes that 

influence cognitive performance (Blom et al., 2014; Gollan et al., 2005, 2007; Portocarrero et al., 

2007; Rosselli et al., 2000) pre- (Blom et al., 2014; Gollan et al., 2005, 2007; Portocarrero et al., 

2007; Rosselli et al., 2000) and post- (Faroqi-Shah et al., 2018; González et al., 2019; Ratiu & 

Azuma, 2017) brain injury in children (Sowell et al., 2001), adults, and older adults (Grady et al., 

2015). The anatomical and functional changes have been labeled neuroplasticity. Neuroplasticity 
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gives context for examining how bilingualism affects cognitive abilities and how experience 

modifies brain structure and brain function (Bialystok et al., 2012). Neuroplasticity, also known 

as brain plasticity or neural plasticity, is the brain’s ability to adapt in response to changes in the 

environment or damage to the brain tissue (Sharma et al., 2013) by altering structural or 

functional aspects of the brain. (Sharma et al., 2013). Structural neuroplasticity refers to the 

brain’s ability to change the internal structure or gray and white matter as well as cortical 

thickness and surface area, resulting in structural connectivity (Sharma et al., 2013). Functional 

neuroplasticity refers to the brain’s ability to alter the functional properties of neurons resulting 

in permanent changes in synapses (Sharma et al., 2013). 

Measuring Structural Changes in the Bilingual Brain 

Neuroimaging techniques have played a pivotal role in investigating the integrity of brain 

structures, interconnections, development, and pathology (Smith et al., 2004) and are becoming 

important tools for rehabilitation research (Crosson et al., 2010). Neuroimaging techniques 

provide researchers and clinicians the ability to determine the effects of brain injury or disease 

on cognition and monitor how rehabilitation changes brain systems (Crosson et al., 2010). There 

are a number of noninvasive neuroimaging techniques utilized throughout the world today that 

allow clinicians and researchers to diagnose, interpret, and treat individuals. The techniques 

mentioned in this literature review include computerized tomography scan (CT), positron 

emission tomography (PET), magnetic resonance imaging (MRI), diffusion tensor imaging 

tractography, voxel-based morphometry (VBM), functional magnetic resonance imaging (fMRI), 

and functional near-infrared spectroscopy (fNIRS), all of which will be discussed briefly in this 

section for reference. 
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A CT scan of the brain is a noninvasive diagnostic imaging procedure using special x-ray 

measurements to provide horizontal or axial images (often called slices) of the brain. Brain CT 

scans can provide more detailed information about brain tissue and brain structures than standard 

x-rays of the head, thus providing more detail related to injures and/or diseases of the brain. They 

can show the soft tissues, blood vessels, and bones in various parts of the body. Brain CT scans 

can be performed with or without contrast. In some cases, a contrast dye is used to help the 

radiologist interpret the images. This contrast dye may be injected into the bloodstream, ingested 

through the gastrointestinal tract, or placed into the spinal canal. CT scans provide more detailed 

images than traditional radiographs (x-rays). 

A brain PET scan is an imaging test that shows how the brain is functioning by using a 

radioactive substance called a tracer (radioactive material) to detect disease or injury in the brain. 

The tracer is given through a vein (intravenous) or breathed in as a gas. The tracers attach to 

compounds such as glucose, which is the principal fuel of the brain. Areas that are more active 

utilize glucose at a higher rate than inactive areas. The PET scanner detects signals from the 

tracer, and a computer creates 3-D images from the data for interpretation. Therefore, a PET scan 

allows clinicians to detect any abnormalities or differences in brain function, as it provides 

information such as the size, shape, and function of the brain. 

MRI is a neuroimaging technique that produces high-quality images of the internal 

structure and function of the brain by utilizing magnetic fields and radio waves to detect proton 

signals from water molecules (Symms et al., 2004). An MRI provides structural information in 

the form of neural volume measured by the total brain volume, gray matter, and white matter 

volume, as well as cortical thickness and surface area (Mills & Tamnes, 2014). An MRI is 

typically divided into structural MRI or fMRI (Sowell et al., 2001). The core of almost every 
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MRI protocol includes T1- and T2-weighted sequences that identify differences and/or 

abnormalities in brain anatomy by utilizing signal imaging (Fischl & Dale, 2000; Symms et al., 

2004; Whitwell, 2009). Fluid attenuated inversion recovery is a more recent scan described as an 

enhancement or replacement for T2-weighed sequencing (Symms et al., 2004). 

fMRI is a series of MRI scans measuring brain function via a computer’s combination of 

multiple images taken less than a second apart (Chen & Li, 2012). fMRI measures brain activity 

of blood flow by detecting blood-oxygenation-level-dependent (BOLD) signal change due to the 

hemodynamic and metabolic sequence of neuronal responses. This technique relies on the fact 

that cerebral blood flow and neuronal activity are coupled. When an area of the brain is in use, 

blood flow to that region increases (Chen & Li, 2012). During an fMRI, patients are asked to 

perform a certain activity to help map the functional areas of the brain. In addition to detecting 

BOLD responses from activity due to task/stimuli, fMRI can also measure resting state or a 

taskless state referred to as resting-state fMRI. Resting-state fMRI is used in brain mapping to 

evaluate regional interactions in a resting or task-negative state when an explicit task is not 

performed. A number of resting-state conditions are observed in the brain, one of which is the 

default mode network. Resting-state conditions are observed through changes in blood flow in 

the brain, which creates what is referred to as a BOLD signal. The resting-state approach is 

useful for exploring the brain’s functional organization and examining if it is altered in 

neurological or mental disorders (Li et al., 2018). 

fNIRS is a functional neuroimaging technology that monitors changes in blood 

oxygenation and blood volume in the prefrontal cortex. This is performed by attaching a sensor 

to the subject’s forehead and measuring changes in the blood flow or its oxygenation levels of 

the brain before, during, and after a task (Herold et al., 2018) 
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Diffusion tensor imaging (DTI) tractography is an MRI technique measuring the rate at 

which water molecules travel along white matter tracts in the brain to delineate the axonal 

organization of the brain. The degree of anisotropic water diffusion constrained by atoms (i.e., 

fractional anisotropy, FA) is measured to provide a measurement of white matter integrity in the 

brain. FA gives information about the shape of the diffusion tensor at each voxel and describes 

the degree of anisotropy by recording the differences between isotropic (circular in shape; FA = 

0) and anisotropic diffusion (linear or elongated in shape; FA = 1; Mori & Zhang, 2006), with 

higher FA indicating better integrity (Luk et al., 2011). FA can also be utilized to obtain a mean 

estimate of diffusivity (MD) that measures the overall magnitude of diffusion (water in a fluid-

filled ventricle would have high MD whereas that in bone would have low MD), an estimate of 

diffusivity parallel to white matter tracts (axial diffusivity, AD) or perpendicular to white matter 

tracts (radial diffusivity, RD; Beaulieu, 2009). 

VBM is an MRI technique detecting focal differences in brain anatomy using a statistical 

approach to parametric mapping. Most commonly, VBM examines gray matter concentrations in 

the brain at the voxel level (Ashburner & Friston, 2000; Kurth et al., 2015). While its most 

common use is to measure gray matter, it can also be used to examine white matter. VBM 

comprises three preprocessing steps: (1) tissue classification, (2) spatial normalization, and (3) 

spatial smoothing, followed by the actual statistical analysis (Kurth et al., 2015). The statistical 

analysis is used to identify differences in brain anatomy between groups of subjects, which in 

turn, can be used to infer the presence of atrophy or, less common, tissue expansion in subjects 

with disease. VBM typically uses T1-weighted volumetric MRI scans and performs statistical 

tests across all voxels in the image to identify volume differences between groups (Whitwell, 

2009). 



 

8 

Advances in neuroimaging have changed the way that clinicians monitor brain function, 

dysfunction, and rehabilitation. Neuroimaging techniques are valuable tools utilized in 

combination with a neuropsychological assessment that facilitate the treatment process following 

an acquired brain injury. The standard rehabilitation program worldwide for patients with 

acquired brain injury is called cognitive rehabilitation. 

The Process of Cognitive Neurorehabilitation 

Cognitive neurorehabilitation has been defined as “a systematic functionally oriented 

service of therapeutic activities based on assessment and understanding the patient’s brain 

behavioral deficits” (Cicerone et al., 2000, p. 1596). The primary objective of cognitive 

rehabilitation is to maximize functional recovery and independence, reinstate employment, 

achieve functional productivity, and improve overall quality of life (Messinis et al., 2019). For 

rehabilitation specialists to be most effective, they rely on evidence from the initial part of 

cognitive rehabilitation, including a neuropsychological assessment. The neuropsychological 

assessment serves several purposes. To begin, neuropsychological assessments define areas of 

cognitive function and areas in need of treatment, as the data collected from the assessment allow 

clinicians to make inferences about the nature and extent of the personal cognitive dysfunction 

(Casaletto & Heaton, 2017). Awareness of a person’s cognitive strengths and weaknesses 

provides a means of targeting the cognitive domains that require remediation and capitalizing on 

the person’s residual cognitive ability to facilitate treatment. In addition, neuropsychological 

assessments provide a means for evaluating the effectiveness of treatment (Casaletto & Heaton, 

2017). Neuropsychological assessments are an essential process to neurorehabilitation, as the 

sequela of an acquired brain injury predicts rehabilitation outcomes (Whyte et al., 2011), and 
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early intervention after an acquired brain injury has shown to significantly improve outcomes 

compared to intervention implemented later (León-Carrión et al., 2013). 

Acquired Brain Injuries 

An acquired brain injury has been defined as brain damage occurring after birth from 

traumatic or non-traumatic causes that is unrelated to congenital diseases or neurodegenerative 

disorders (Spreij et al., 2014). Two of the leading acquired brain injuries are traumatic brain 

injury (TBI) and stroke. Given that TBI and stroke are two of the most prevalent acquired brain 

injuries, these two are the focus of this paper when discussing the cognitive impact in bilinguals 

following injury to the brain. 

Traumatic Brain Injury 

TBI has been defined as a non-degenerative, non-congenital disruption to the brain from 

an external physical force leading to permanent or temporary cognitive impairment, physical and 

psychological functions, with an associated diminished or altered state of consciousness (Silver 

et al., 2009; Timmons, 2012). Statistically, TBI represents the greatest contributor to death and 

disability globally among all trauma-related injuries (Rubiano et al., 2015). 

A TBI can be categorized into three distinct levels of severity, with the severity of 

damage to the brain predicting recovery trajectory. Several measures are utilized to assess the 

level of severity (Brasure et al., 2012). Such measures include structural imaging, assessing 

duration of loss of consciousness, altered consciousness, and/or post-traumatic amnesia, the 

Glasgow Coma Scale (GCS) score, and the Abbreviated Injury Severity Scale Score. The GCS is 

the most widely used scale to determine severity (Brasure et al., 2012). Symptoms of a TBI vary 

from mild and moderate to severe, depending on the extent of damage to the brain. A mild level 

of severity entails normal structural neuroimaging results, a brief or no loss of consciousness (0-
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30 minutes), there may be an alteration of consciousness/mental state (AOC) up to 24 hours, 

post-traumatic amnesia (PTA) can be present for up to a day (0-1 day) and the scores on the GCS 

range from 13-15. A moderate level of severity demonstrates normal or abnormal neuroimaging 

results, a loss of consciousness greater than 30 minutes but less than 24 hours, an alteration of 

consciousness greater than 24 hours, PTA is present for higher than a day but less than seven 

days and scores on the GCS range from 9-12. A severe level of severity demonstrates normal or 

abnormal results, a loss of consciousness greater than 24 hours, an alternation of 

consciousness/mental states (AOC) greater than 24 hours, PTA is present for more than seven 

days, and scores on the GCS are less than 9 (Brasure et al., 2012). 

From a neuropsychological functioning standpoint, a mild to moderate TBI impairs 

memory, attention, processing speed, and executive functioning. Moderate to severe TBIs also 

demonstrate deficits in memory, attention, processing speed, and executive functioning with 

additional dysfunctions in communication, visuospatial processing, intellectual ability, and 

awareness (Rabinowitz & Levin, 2014). 

Stroke 

A stroke results from a blockage of blood supply to the brain or when a blood vessel in 

the brain bursts (“About stroke,” 2020). Statistically, stroke is considered the second most 

common cause of death and adult disability worldwide (Katan & Luft, 2018). Implementing 

rehabilitation following a stroke demonstrates a significant impact on reducing stroke-related 

morbidity and improving outcomes. The most widely used and validated stroke scale is the 

National Institutions of Health Stroke Scale. Scores on the National Institutes of Health Stroke 

Scale range from 0-42. A score of 0 indicates no stroke symptoms, 1-4 suggests a minor stroke, 
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5-15 suggests a moderate stroke, 16-20 suggests a moderate to severe stroke, and 21-42 suggests 

a severe stroke (Al-Qazzaz et al., 2014). 

From a neuropsychological functioning standpoint, cognitive impairment and memory 

loss are common after a stroke. Stroke impairs cognitive domains such as attention, memory, 

language, and orientation. With the most deficits in attention, executive functions and memory 

(Al-Qazzaz et al., 2014). 

Purpose of the Review 

As briefly discussed in the earlier sections, acquiring a second language poses more 

complexity to cognitive functioning. While there have been numerous studies conducted on the 

cognitive impact of stroke and TBI, few studies focus on the bilingual population with acquired 

brain injuries making it difficult to adequality and appropriately treat bilinguals. The purpose of 

this review is to explore the literature for the structural, functional, and neuropsychological 

performance differences to aid in providing clinicians a point of reference when working with 

bilinguals who have sustained an acquired brain injury. This review further explores the 

literature for specific cognitive differences in bilinguals following a stroke or TBI and identifies 

variables that may facilitate cognitive differences. Last, this review provides clinical pearls for 

reference specifically tailored to the bilingual population. 

Literature Review Procedure 

To conduct the literature review, various databases were utilized to locate peer-reviewed 

scientific articles that discuss studies with bilingual individuals at various levels of bilingual 

experiences pre- and post-brain-injury. Articles discussing the structural, functional, cognitive, 

and neuropsychological performance of bilinguals are incorporated with the inclusion of various 

age groups (i.e., children, adults, and older adult bilinguals), and a diversity of language 



 

12 

experiences, which include: language proficiency (high or low proficiency), language 

competence (balanced or unbalanced), age of acquisition (early or late), order of languages 

acquired (simultaneous or sequentially) and the context of the acquisition of languages (natural 

setting or a formal or instructed setting). Discussing all acquired brain injures is beyond the 

scope of this literature review, and, as such, only two of the most prevalent acquired brain 

injuries (i.e., TBI and stroke) are included in this review. Based on the findings of this review, 

recommendations for assessing deficits and treating bilingual patients are provided. 
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CHAPTER II: STRUCTURAL CHANGES IN BILINGUALS 

Understanding differences in the brain’s integrity in a population that is rapidly growing 

but is not that well understood allows clinicians to be better equipped in predicting outcomes and 

facilitating greater recovery rates. Studies on bilingual populations reveal unique variations in 

the brain’s integrity that differ from monolingual individuals (Bialystok et al., 2012; Costa & 

Sebastián-Gallés, 2014), suggesting effects of brain plasticity. Mechelli et al. (2004) are credited 

as the first to identify and report significant brain structure variations in bilinguals compared to 

monolinguals, with more recent studies demonstrating greater volume/and or density in the 

bilingual brain relative to monolinguals (Li et al., 2014). Given evidence to suggest that the 

acquisition of a second language influences the brain’s integrity and the importance of gray 

matter and white matter integrity and brain volume in overall cognitive functioning, it is 

beneficial for clinicians to better understand bilingual brain differences. 

 Therefore, the objective of this chapter is to highlight the unique structural differences 

among bilinguals compared to monolinguals. To more easily identify structural differences, this 

chapter begins by providing a brief general overview of the traditional cortical brain regions 

involved in language processing. This is followed by discussing studies that have demonstrated 

structural differences among bilingual individuals by utilizing the various imaging techniques 

discussed in the introductory chapter. 

Language Network Model 

Our understanding of which brain regions account for different parts of language is far 

from complete. There is still a lot of research being conducted on this topic; however, due to the 

introduction of contemporary neuroimaging techniques, there has been significant advancement 

and understanding of language processing (Ardila et al., 2016). Research on the brain 
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organization of language has shed light on associated networks or circuits rather than specific 

brain areas involved in language processing (Ardila et al., 2016). 

The classical model of the neural basis of language consists of Broca’s area (the motor 

speech center), Wernicke’s area (the sensory speech center) and the arcuate fasciculus (a bundle 

of nerve fibers connecting the above two cortical areas; Ardila et al., 2016; Fujii et al., 2016). 

Research on language functioning has further grown to include a larger and more complex 

language model that includes frontal (inferior frontal gyrus), temporal (superior temporal gyrus 

and the middle temporal gyrus), and parietal (inferior and superior parietal lobe) language areas 

(Ardila et al., 2016; Fujii et al., 2016). Broca’s area consists of the pars triangularis and 

opercularis of the inferior frontal gyrus, corresponding to Brodmann area 45 and 44, 

respectively. Wernicke’s area is the cortical area of the posterior portion of the superior temporal 

gyrus and a part of the supramarginal gyrus, corresponding to Brodmann area 22 (Ardila et al., 

2016; Fujii et al., 2016). 

Language processing is comprised of two major pathways, the dorsal stream and the 

ventral stream. The dorsal stream is supported primarily by the superior longitudinal fasciculus 

and the arcuate fasciculus, which are associated with phonological processing. The ventral 

stream is primarily supported by the inferior frontal-occipital fasciculus and is associated with 

semantic processing (Ardila et al., 2016; Fujii et al., 2016). 

 While research supports a universal language pathway, studies with bilingual individuals 

have revealed differences in language and non-language processes. The remaining sections of 

this chapter focus on highlighting studies that have demonstrated structural differences in 

language and non-language brain regions in bilingual individuals. Studies on gray/white matter 

and cortical thickness, and brain volume with bilingual individuals are essential in understanding 
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the impact learning a second language has on brain development and progression throughout the 

lifespan. Therefore, bilingual studies covered in this chapter include those that found gray and 

white matter differences and changes in brain volume and cortical thickness. 

Gray Matter Volume/Density Studies 

Using Whole Brian Approach 

Mechelli et al. (2004) compared 25 early English-Italian bilinguals who started to learn 

their second language (L2) before the age of 5 (mean < 5 years), 33 late bilinguals who started to 

learn L2 between 10 and 15 years old (mean age 10-15 years), and 25 English monolinguals who 

had little or no exposure to a second language. Procedures utilized included the VBM analysis of 

the gray matter density using the statistic parameter mapping software package. Bilinguals 

demonstrated significantly higher gray mater density in the left inferior parietal cortex relative to 

monolinguals (z-score = 7.1; p < 0.05, corrected for multiple comparisons across the whole 

brain), with greater effects for early bilinguals in the left hemisphere (z-score = 3.5; p < 0.001 

uncorrected) compared to monolinguals (Mechelli et al., 2004). While increased gray matter 

density was demonstrated in the inferior parietal cortex for both early and late bilinguals, the 

effect was greater in the left (z-score = 3.5; p < 0.001, uncorrected) and right (z-score = 3.5; p < 

0.001, uncorrected) hemispheres in early bilinguals and in higher proficient (z-score = 4.1; p < 

0.05, corrected after 10mm small volume correction) bilinguals (Mechelli et al., 2004). 

Researchers have suggested the left inferior parietal lobe is an important area for phonological 

working memory, lexical learning, and semantic integration. In summary, increased gray matter 

in the left inferior parietal lobe may, therefore, be related to processing larger vocabulary in the 

bilingual individual (Mechelli et al., 2004).  
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Pliatsikas et al. (2013) investigated whether speaking a second language affects the 

brain's structure while focusing on the areas that have been proposed to be related to the 

processing of grammatical rules in a second language, such as the cerebellum. Two groups were 

compared: 17 Greek-English bilinguals (mean age = 27.5 years; range = 99-37 years, mean L2 

age of acquisition = 7.7) and 22 English monolinguals (mean age = 24.5 years; range = 20-38 

years). To track changes in brain structure, a between-group whole brain, voxel-by-voxel 

comparison of the gray matter volume using the FRMB Software Library VBM protocol was 

conducted. Results revealed that early acquisition of a second language demonstrates increased 

gray matter density in the cerebellum bilaterally (p < 0.001), a structure that has been related to 

the processing of grammatical rules and procedural memory (Pliatsikas et al., 2013). Given that 

the cerebellum has been suggested to play a role in processing grammatical rules in L2, this 

study also investigated whether increased GM volume would reflect efficient linguistic rule 

application in L2 learners. Gray matter volume was calculated from the cerebellar cluster from 

the VBM analysis and Pearson’s corrections between participants’ cerebellar GM volume and 

their reaction times in a task tapping grammatical processing task. Results revealed a significant 

negative correlation between GM volume and reaction times in L2 learners (r = −0.60, p = 

0.014). In summary, the results from this study suggested that early L2 acquisition increases the 

gray matter volume in the cerebellum, which promotes more efficient processing of grammatical 

rules in the second language (Pliatsikas et al., 2013). 

Olulade et al. (2016) compared 15 young-adult simultaneous English-American Sign 

Language bilinguals, also referred to as bimodal bilinguals since they learned two languages in 

different modalities; mean age = 26.4 years and 16 early Spanish-English unimodal bilinguals 

also referred to as learning two spoken languages; mean age = 22.3 years, age of acquisition less 
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than 6 years old with 15 English monolinguals; mean age = 25.9 years. To assess structural brain 

differences in each group, high-resolution T1-weighted MRI images were acquired, and analysis 

of the gray matter was performed using an automated segmentation/normalization algorithm 

(SPM8). A two-sample t-test was utilized to obtain two separate between-group comparisons, 

and gray matter volume was compared between unimodal bilinguals and monolinguals. Images 

were assessed using a statistical threshold at the highest level of p < 0.005 and corrected for 

multiple comparisons at a threshold of p < 0.05 with a non-stational cluster correction. An 

analysis of total intracranial volume was also performed, and there was no difference between 

groups. Results further revealed greater gray matter volume bilaterally in unimodal Spanish-

English statical parameter mapping. An analysis of total intracranial volume was also performed, 

and there was no difference between the groups. Results revealed greater gray matter volume 

bilaterally in unimodal Spanish-English bilinguals relative to the English-speaking monolinguals, 

with greater gray matter volume bilaterally in areas in the dorsolateral prefrontal cortex and 

parietal cortex. The dorsolateral prefrontal cortex and parietal cortex are involved in the 

executive control network (Seeley et al., 2007) and attention (Behrmann et al., 2004), more 

specifically, working memory, attentional control (Curtis & D’esposito, 2003), conflict 

resolution (Bunge et al., 2002), and inhibition (Ridderinkhof et al., 2004). Greater gray matter 

volume was shown in the right precentral gyrus (BA4), which extended both anteriorly into the 

inferior frontal gyrus and frontal operculum and posteriorly into the inferior parietal cortex. A 

second right hemisphere cluster was found in the middle frontal gyrus (BA 11) that extended into 

the medial and superior frontal gyri (BA10/11), and a third cluster in the superior temporal gyrus 

(BA 22) that extended into the middle temporal gyrus (BA 21/22). Left hemisphere clusters were 

not as extensive. The largest cluster was located in the middle frontal gyrus (BA 10), extending 
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into the inferior frontal gyrus (dorsolateral prefrontal cortex/ventrolateral prefrontal cortex). 

Another cluster was located in the left occipital lobe’s middle (BA 18), inferior (BA 18), and 

superior occipital gyri (BA 19), and the cuneus (BA 19), which extended into the posterior 

aspects of the middle temporal gyrus (BA 19). A smaller cluster was found in the left precentral 

gyrus (BA4). Results demonstrated that regions involved in executive control, outside of 

traditional language processing areas, are affected by unimodal bilingualism. The extensive 

differences in the right dorsolateral prefrontal cortex and parietal cortex demonstrate the 

recruitment of right-sided executive control and attention brain regions (Olulade et al., 2016). 

Burgaleta et al. (2016) investigated structural brain differences among 42 young 

simultaneous Catalan-Spanish bilinguals (mean age = 21.6 years; SD = 2.17) and 46 Spanish 

monolinguals (mean age, 21.9 years, SD = 4.13). To assess structural brain difference in each 

group, high-resolution MRI images were acquired using a 1.5T scanner and analysis of 

subcortical shape was performed using the FIRST tool that is part of the FSL package and 

analysis of the gray matter was performed using an automated segmentation /normalization 

algorithm (SPM8) and a threshold-free cluster enhancement technique to correct the family-wise 

error at p < 0.05), with an underlying voxel level of p < 0.005 to a cluster-size criterion of at least 

k = 347 voxels. Analysis of subcortical structures demonstrated regional differences between 

bilingual and monolingual groups in the basal ganglia bilateral putamen (p < 0.05), left globus 

pallidus (p < 0.1), and right caudate nucleus (p < 0.05), and bilaterally in the thalamus in 

bilinguals relative to monolinguals (p < 0.01). VBM results demonstrated a large increase of gray 

matter volume for bilinguals bilaterally in the frontal, temporal, and parietal lobes, the 

cerebellum, and the left Hechl’s gyrus (Burgaleta et al., 2016). The putamen’s involvement in 

language production and perception has been well documented (Bohland & Guenther, 2006; 
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Murdoch, 2001; Oberhuber et al., 2013; Robles, 2005; Tettamanti et al., 2005). The thalamus is a 

structure commonly activated in naming or word generation (Indefrey & Levelt, 2004) and in 

lexical decision-making and reading tasks (Llano, 2013). Last, the globus pallidus is a brain 

structure shown to play a role in speech production tasks (Murdoch, 2001). Burgaleta et al.’s 

(2016) analysis revealed significantly expanded subcortical structures in bilinguals compared to 

monolinguals, localized in the bilateral putamen, thalamus, left globus pallidus, and right caudate 

nucleus. Results suggest that the acquisition of a second language may lead to greater 

development of a subcortical brain network for language processing (Burgaleta et al., 2016) 

Using a whole-brain approach in older adults, Abutalebi et al. (2014) used structural MRI 

and VBM to measure gray matter volume in bilingual and monolingual individuals in the left 

anterior temporal pole. The study chose to focus on the left temporal since it is a region subject 

to strong cognitive aging-related decreases and has also been indicated in the involvement with 

second-language picture-naming performance (Baldo et al., 2013). Participants included 23 older 

adult bilinguals (12 Cantonese-English and 11 Cantonese-Mandarin; mean age = 62.17 years; 

mean L2 age of acquisition = 18.87) and 23 Italian monolinguals (mean age = 61.92 years). 

Results from an independent sample t-test revealed a significantly higher gray matter volume 

among the bilingual group relative to monolinguals in the anterior portion of the left inferior 

temporal gyrus (t = 2.45, p = 0.02). The authors of this study concluded that bilingualism may 

promote an overall neuroprotective effect to the left temporal pole, an area most vulnerable to 

aging effects. Therefore, these findings suggest that acquiring a second language can be a 

preventative measure for healthy cognitive aging (Abutalebi et al., 2014). 

In summary, the studies with adult bilinguals demonstrated differences mostly in three 

regions: the left/right inferior parietal lobule (Burgaleta et al., 2016; Mechelli et al., 2004; 
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Olulade et al., 2016), the cerebellum (Burgaleta et al., 2016; Olulade et al., 2016; Pliatsikas et al., 

2013) and the left inferior frontal gyrus (Burgaleta et al., 2016; Hosoda et al., 2013; Olulade et 

al., 2016). However, it is important to note when interpreting the results that studies used 

different family-wise error-controlling methods (i.e., random theory or threshold-free cluster 

enhancement and permutations) and different levels of inferences (i.e., voxel-level or cluster-

level), which creates differences in levels of sensitivity, therefore, influencing significant levels. 

The studies reviewed thus far have highlighted utilization of traditional language-

involved brain regions (e.g., inferior parietal lobe, left inferior frontal gyrus) in bilinguals but 

with greater utilization and recruitment of brain regions not traditionally found in language 

processing (e.g., cerebellum). Results suggest bilingualism promotes a more complex language 

processing model for language management. The next section reviews studies that limit their 

analysis to a region or volume of interest to demonstrate if more significant results appear when 

comparing monolingual and bilingual brain differences. 

Using ROI Based Approach 

Ressel et al. (2012) conducted a study investigating the effects of early language 

exposure on the Heschl’s gyrus by comparing 22 young Catalan-Spanish bilinguals with early 

age of acquisition beginning at the age of seven (mean age = 23.1 years) to 22 Spanish 

monolinguals (mean age = 21.5 years). The Heschl’s gyrus is a structure that has been known to 

be involved in processing phonological information (Jacquemot et al., 2003). VBM was 

performed using the diffeomorphic anatomical registration through the exponentiated Lie algebra 

procedure implemented in source-based morphometry 8. The MRI images were segmented into 

GM, WM, and CSF using the standard unified segmentation model in SPM8. Significant 

differences among the two groups were not seen at a whole-brain analysis (voxel-level threshold 
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t = 5.22, p < 0.05, family-wise error corrected for multiple comparisons). However, when a small 

volume correction (t = 3.3; p < 0.001 voxel-based, uncorrected) was performed, bilinguals 

demonstrated greater gray matter volume in the Heschl gyri bilaterally compared to 

monolinguals (Ressel et al., 2012). The authors concluded that the significant effect of gray 

matter in the Heschl gyri in Catalan-Spanish bilinguals is likely due to the differences in 

phonology in the two languages, therefore, leading to the recruitment of the auditory cortex 

region. This is important to note, as researchers working with bilinguals whose languages may 

differ in their phonology may also differ in the regions of recruitment for language processing 

(Ressel et al., 2012). 

 Zou et al. (2012) compared structural brain images between bilingual and monolinguals 

using the VBM analysis toolbox in source-based morphometry 5 to identify potential differences 

of the caudate nucleus, a cortical region for successful language control. A sample t-test was 

subsequently performed on the date from each voxel for bilinguals and monolinguals. Clusters 

with more than 100 voxels of activation along with an uncorrected voxel size threshold of p < 

0.001 and corrected to p < .05 using a small volume correction were considered to be statistically 

significant. Participants included 14 bimodal (individuals who are fluent in a sign language and a 

spoken language) Chinese-Chinese Sign Language adult bilinguals (mean age = 49 years; mean 

L2 age of acquisition = 19; 29 years of experience with Chinese Sign Language) and 13 Chinese 

monolinguals (mean age = 48 years). Following a small volume correction, results demonstrated 

increased volume in the left caudate nucleus (p <.05, corrected) in the bilingual group relative to 

monolinguals. The increase in gray matter in the left caudate nucleus suggests this brain region is 

critical for language switching in bimodal bilinguals (Zou et al., 2012). 
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Mårtensson et al. (2012) investigated the influence of the acquisition of a foreign 

language on brain organization. Participants included 14 native Swedish interpreter students 

(mean age = 19.9 years) who took a 3-month intensive language course focusing on vocabulary 

for different languages (i.e., 4 Arabic, 8 Dari, and 2 Russian) and 17 native Swedish non-learners 

(mean age = 20.6 years) as a control group. Images were acquired using A GE Discovery MR 

750, 3 T scanner with a 32-channel phased-array head coil. The data volumes were then analyzed 

using FreeSurfer, a semi-automatic software package that performs cortical reconstruction and 

volumetric segmentation of T1-weighted images. Hippocampal volume estimates were then 

exported to SPSS version 17 and analyzed with a 2 (group; interpreters vs. controls) by 2 (time; 

pretest vs. posttest) by 2 (hemisphere; left vs. right) mixed analysis of variance (ANOVA). The 

threshold for statistical significance was p < .05. Volume measures were restricted to the left and 

right hippocampus. Results revealed larger volume on the right side of the hippocampus for 

interpreters than for controls (F(1,29) = 2.92, p >.098, r = .61). Results suggest learning a second 

language in adulthood promotes structural changes in language-related brain regions 

(Mårtensson et al., 2012), particularly the hippocampus, an area involved in vocabulary 

acquisition (Davis & Gaskell, 2009). 

Using a region of interest analysis, Abutalebi et al. (2014) recruited a group of 23 senior 

Chinese bilingual speakers (mean age = 62.2, SD = 5.36). Twelve bilinguals spoke Cantonese 

and English, and 11 bilinguals spoke Cantonese and Mandarin. The monolingual group consisted 

of 23 senior Italian individuals (mean age = 61.9, SD = 6.80). Processing procedures for 

bilinguals included the following: (a) visual inspection of MRI, (b) automatic reorientation of 

structural images according to the default tissue probability map; (c) image segmentation using 

VBM 8; (d) application of the DARTEL approach for further normalization and modulation; and 
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(e) smoothing using an 8mm Gaussian kernel. An independent sample t-test performed on the 

GM volume demonstrated greater gray matter in the left temporal pole (p = 0.05), right temporal 

pole (p = 0.006) and left/right orbitofrontal cortex (p = 0.001) in the bilingual group, relative to 

the monolingual group (Abutalebi et al., 2014). The temporal pole has been shown to be 

involved in lexical retrieval (Tranel, 2009) and has also been subject to reduced cortical thinning 

due to aging, resulting in difficulties with object naming, word recall, and word learning (Baldo 

et al., 2013). Among the bilingual population specifically, Abutalebi et al. (2014) demonstrated a 

positive correlation between second-language picture naming and increased gray matter. The 

authors of this study concluded the acquisition of a second language exerts a neuroprotective 

effect on age-affected regions. 

Abutalebi et al. (2015) examined the effect of aging on the inferior parietal lobe in older 

adult bilingual speakers from Hong Kong. Participants included 30 bilinguals who spoke either 

Cantonese and English (16 of 30) or Cantonese and Mandarin (14 of 30), with a mean age = 63.2 

years; SD = 5.86; age range = 55-75 years who started to learn L2 at a mean age = 18.3 years. 

The bilingual groups were then compared to 30 older Italian monolinguals with a mean age = 

61.9 years, SD = 6.71. Brain images were acquired using a 3T Achieva Philips MR scanner. An 

axial high-resolution structural MRI scan was acquired for each participant, and the VBM 8 

toolbox was used to segment reoriented images into GM, WM, and CSF. The region of interest 

was the left and right inferior parietal lobes. To investigate age-related differences in GM 

volume in the regions of interest, GM volume extracted from the left/right inferior parietal lobes 

was correlated with age in each of the groups. A Fisher’s Z transformation test was then 

conducted to assess the significance of the difference in these correlation coefficients. This was 

followed by a two-sample t-test to compare the mean differences of GM volume for each region 
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of interest. Results revealed a significant negative correlation between age and GM volume for 

monolinguals (r = −.65, p < 0.001) but not for bilinguals (r = −.04, p = .85. Fisher’s test showed 

that these correlation coefficients were statistically different (Fisher’s Z = 2.69, p < .01). Older 

adult bilinguals demonstrated significantly greater volume in the left inferior parietal lobule (p = 

.02) and right inferior parietal lobule (p < .001) relative to the monolingual group (Abutalebi et 

al., 2015). The inferior parietal lobe has been shown to contribute to linguistic attentional and 

action-related functions (Abutalebi et al., 2015). At a microanatomical level, the inferior parietal 

lobe is divided into the supramarginal gyrus and the angular gyrus. In the left hemisphere, the 

more caudal portion of the left inferior parietal lobe (left inferior parietal lobe) has been shown to 

be active during language-related tasks, focusing on semantic and phonological issues (Vigneau 

et al., 2006). The left inferior parietal lobe has also shown involvement in verbal short-term 

memory (Zatorre et al., 1992) and attentional processing (Rushworth et al., 2001; Todd & 

Marois, 2004). This study revealed that while older adult monolinguals showed reduced GM 

volume in the right inferior parietal lobe, this was not the case for older adult bilinguals. Instead, 

the bilingual group demonstrated increased GM volume bilaterally in the inferior parietal lobe, 

suggesting that the acquisition of a second language promotes neuroprotective aging effects in 

the inferior parietal lobe bilaterally. Therefore, the enhanced gray matter in the inferior parietal 

lobe may promote intact semantic, phonological, attentional, and verbal short-term memory 

processing skills (Abutalebi et al., 2015). 

In summary, when studies performing VBM with young adults limited their analyses to 

the scope of certain regions of interest, effects were shown in the right hippocampus (Mårtensson 

et al., 2012), Heschl’s gyri (Ressel et al., 2012), and the left caudate nucleus (Zou et al., 2012). 

Studies with older adults demonstrated effects in the right/left temporal pole, orbitofrontal cortex 
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(Abutalebi et al., 2014), and the inferior parietal lobule (Abutalebi et al., 2015). Results 

demonstrate utilization of typical language processing brain regions (i.e., the temporal pole and 

the inferior parietal lobule) but with increased recruitment of brain regions in the frontal (i.e., 

orbitofrontal cortex) and temporal (i.e., right hippocampus and Heschls gyrus) lobes. Bilinguals 

also demonstrated further recruitment of a subcortical region of the brain (i.e., left caudate 

nucleus). With regard to the temporal lobe regions, the increased gray matter in the right 

hippocampus demonstrates its importance in vocabulary acquisition in second-language learners 

(Davis & Gaskell, 2009), and increased gray matter in the left Heschls gyrus demonstrates its 

importance in processing phonological information for L2 learners. The increased gray matter in 

the orbitofrontal cortex in older adults was also an interesting finding. It is an area involved in 

lexical retrieval and has been shown to be vulnerable to age-associated tissue loss in older adults. 

Therefore, the increased gray matter in the orbitofrontal cortex in older adult bilingual 

individuals suggests acquiring a second language may play a role in promoting cognitive reserve. 

The next section of this chapter discusses studies that have evaluated cortical thickness in 

bilingual individuals. The thickness of the cortex is a useful measure for identifying changes in 

brain regions and possibly for assessing treatment. It can also be a way to study how the normal 

brain develops, ages, and how it may be influenced by environmental experiences (Hutton et al., 

2008). Cortical thickness studies with bilingual participants can provide clinicians greater insight 

into how second-language learning can promote differences in brain development. 

Cortical Thickness Studies 

Klein et al. (2013) examined the effects of age of language acquisition on brain structure. 

Three French-English bilingual groups were compared: 12 early simultaneous bilinguals (mean 

age = 23; the age of acquisition ≤  3 years old), 25 early sequential bilinguals (mean age = 26; L2 
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age of acquisition, after 4 years old and before 7 years old; mean L2 age of acquisition = 5 years 

old), and 29 late sequential bilinguals (mean age = 28 years; L2 age of acquisition, after 8 years 

old and before 13 years; mean L2 age of acquisition = 10 years), with a control group of 22 

English monolinguals (mean age = 25 years). T1-weighted whole-brain scans were acquired on a 

Siemens Sonata 1.5T MRI scanner, and the acquired MR images were processed using the 

CIVET imaging processing pipeline developed at the Montreal Neurological Institute to generate 

cortical thickness measurements for each subject. Analyses were performed using a general 

linear model: (a) cortical thickness contrasts of groups of bilinguals compared to each other and 

to a group of monolinguals, and (b) a series of cortical thickness regression analysis with the 

group of 66 bilingual subjects, taking age of second-language acquisition, proficiency, and years 

of language experience as the primary factors in each regression. All statistical analyses were 

performed using an in-house MNI-developed software package that links to the statistical toolkit 

“r.” Statistical thresholds for cortical thickness analyses were corrected for multiple comparisons 

using the FDR technique at a level of p = 0.05. For each statistical comparison, all p-values were 

pooled across all cortices to determine the FDR threshold. Results demonstrated greater cortical 

thickness for early (t = 2.51; p = 0.03) and late (t = 2.88; p = 0.003) sequential bilinguals 

compared to monolinguals in the anterior regions of the brain (pars triangularis and pars 

opercularis) of the left inferior frontal gyrus (Klein et al., 2013). The sequential bilingual group 

also demonstrated significant positive correlations between the early age of acquisition of L2 and 

greater cortical thickness in the left inferior frontal gyrus. The pars triangularis and pars 

opercularis are found in the inferior frontal gyrus and are involved in processing speech and 

language in Broca’s area. The authors of this study concluded that learning a second language 

after gaining proficiency in the first (sequential bilinguals) modifies the brain’s structure, and the 
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later in childhood the second language is acquired, the greater the thickness of the left inferior 

frontal cortex. Simultaneous, second-language learning did not demonstrate significant effects on 

brain development. Greater cortical thickness in the inferior frontal gyrus in sequential L2 

learners may demonstrate the need for greater involvement of cortical areas to master the second 

language compared to simultaneous L2 learners. Therefore, simultaneous L2 learning may 

involve less recruitment of cognitive regions. 

Mårtensson et al. (2012) also performed a vertex-wise general linear model analysis from 

the cortical thickness data to investigate group differences among the foreign language 

participants and monolingual participants. Vertex-wise general linear model analysis was 

performed to investigate group differences in cortical thickness changes, which reduces to an 

independent-samples t-test. These analyses were then followed by an independent t-test on 

cortical thickness to investigate potential group differences on baseline cortical thickness. The 

threshold for statistical significance was p < .001. The analysis was complemented with an 

independent t-test on the different images. These analyses were complemented with an 

independent t-test on cortical thickness at pretest to investigate potential group differences on 

baseline cortical thickness. The threshold for statistical significance was p < .001. Participants 

included 14 native Swedish interpreter students (mean age = 19.9 years) who took a 3-month 

intensive language course focusing on vocabulary for different languages (i.e., 4 Arabic, 8 Dari, 

and 2 Russian) and 17 native Swedish non-learners (mean age = 20.6 years) as a control group. 

Results revealed significantly different amounts of cortical thickness in three left hemisphere 

regions (p < .001; cluster size > 100): the dorsal medial frontal gyrus, inferior frontal gyrus and 

superior temporal gyrus (Mårtensson et al., 2012). The left frontal-temporal cortex regions are 

involved in a variety of language tasks. Specifically, the inferior frontal gyrus is involved in the 
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articulatory network (Hickok & Poeppel, 2007) and mapping the meaning of new words (Ye et 

al., 2010). The superior temporal gyrus is involved in acoustic-phonetic presses (Démonet et al., 

2005; Hickok & Poeppel, 2007; Price, 2010). Last, the dorsal medial frontal gyrus is part of the 

articulatory network and planning and control of articulatory processes (Hickok & Poeppel, 

2007). The authors of this study concluded that learning a foreign language in adulthood changes 

the structure of language-related brain regions, specifically in the frontal-temporal cortex of the 

left hemisphere (Mårtensson et al., 2012). 

In a study with older adults measuring the cortical thickness in 14 lifelong bilinguals 

(mean age = 70.4 years) and 14 monolinguals (mean age= 70.6 years), significant differences 

were found in the entorhinal cortex and temporal pole. The current study utilized T1-weighted 

MRI to estimate volumetric differences. A significant negative correlation was demonstrated 

between the cortical thickness of the temporal pole and age in the monolinguals (β = −0.02, SE = 

0.01, t = −2.61, p = 0.02, R2 = 0.34) but not for bilinguals (β = 0.01, SE = 0.01, t = 1.03, p < 

0.05, R2 = 0.10). The temporal lobe was a specific region of interest in this study, given that it is 

affected by normal aging as well as semantic dementia and is thought to play a critical role in 

lexical retrieval, while the entorhinal cortex is thought to be involved in memory (Tranel, 2009). 

Results were hypothesized to suggest that bilingualism may attenuate age-related reductions in 

the entorhinal cortex and temporal pole in older adults (Olsen et al., 2015). 

In summary, the young adult cortical thickness studies demonstrate the inferior frontal 

gyrus is a target region of cortical changes in bilinguals. A study with older adult lifelong 

bilinguals has demonstrated that acquiring a second language promotes age-related reduction in 

the entorhinal cortex and temporal pole, suggesting potential cognitive reserve. 



 

29 

The next section discusses white matter changes in bilinguals. While gray matter and 

cortical thickness studies provide clinicians the ability to identify brain region differences, white 

matter studies add additional understanding of the neural networks involved in cognitive 

processes. Therefore, exploring white matter studies that focus on bilingual individuals can 

provide clinicians a more thorough understanding of brain development with this population. 
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Table 1 

Areas of Increased Gray Matter Density/Volume or Cortical Thickness with Group Comparisons 
of Bilinguals Versus Monolinguals and Associated Cognitive Processes 

Brain Region 
Differences 

Associated Cognitive 
Process 

Groups N Age Study 

Frontal      
Pars opercularis Speech production Early simultaneous & early 

sequential bilinguals vs. late 
sequential bilinguals vs. 
monolinguals 

88 Adults Klein et al., 
2013 

Pars triangularis Speech production Early simultaneous & early 
sequential bilinguals vs. late 
sequential bilinguals vs. 
monolinguals 

88 Adults Klein et al., 
2013 

Left dorsal 
medial frontal 
gyrus 

Part of the articulatory 
network, planning & 
articulatory control 

Foreign language intense 
course groups vs. 
monolinguals  

31 Adults Mårtensson et 
al., 2012 

Inferior frontal 
gyrus 

Involved in the 
articulatory network & 
mapping of the meaning 
of new words 

Foreign language intense 
course groups vs. 
monolinguals 

31 Adults Mårtensson et 
al., 2012 

Orbitofrontal 
cortex* 

Lexical retrieval 
involvement  

Bilinguals vs. monolinguals  46 Older 
Adults 

Abutalebi et al., 
2014 

Dorsolateral 
prefrontal 
cortex* 

Involved in the executive 
control network 

Early unimodal bilinguals vs. 
monolinguals 

31 Adults Olulade et al., 
2016 

Parietal      
Left inferior 
parietal cortex 

Phonological working 
memory, lexical learning 
& semantic integration 

Early vs. late bilinguals vs. 
monolinguals 

83 Adults Mechelli et al., 
2004 

Inferior parietal 
lobule* 

Linguistic attentional and 
action-related functions 

Bilinguals vs. monolinguals  60  Older 
Adults 

Abutalebi et al., 
2015 

Parietal cortex* Part of the executive 
control network 

Early unimodal bilinguals vs. 
monolinguals 

31 Adults Olulade et al., 
2016 

Temporal      
Temporal lobe* Lexical retrieval and 

subject to cortical thinning 
due to aging 

Late bilinguals vs. 
monolinguals 

46 Older 
Adults 

Abutalebi et al., 
2014 

Heschl’s gyrus* Processing phonological 
information 

Early bilinguals vs. 
monolinguals 

44 Adult Ressel et al., 
2012 

Right 
hippocampus 

Vocabulary acquisition Foreign language intense 
course groups vs. 
monolinguals 

31 Adult Mårtensson et 
al., 2012 

Superior 
Temporal gyrus 

Acoustic-phonetic presses Foreign language intense 
course groups vs. 
monolinguals 

31 Adult Mårtensson et 
al., 2012 

Temporal pole Lexical retrieval Lifelong bilinguals vs. 
monolinguals 

28 Older 
Adults 

Olsen et al., 
2015 

Entorhinal 
cortex 

Memory  Lifelong bilinguals vs. 
monolinguals 

28 Older 
Adults 

Olsen et al., 
2015 

Cerebellum      
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Brain Region 
Differences 

Associated Cognitive 
Process 

Groups N Age Study 

Cerebellum* Processing of 
Grammatical rules and 
procedural memory in 
bilinguals 

Early bilinguals vs. 
monolinguals 

39 Adults Pliatsikas et al., 
2013 

Subcortical areas (deep gray matter)    
Left caudate 
nucleus 

Language control 
involvement 

Bimodal bilinguals vs. 
monolinguals 

27 Adults Zou et al., 2012 

Putamen* Language production & 
perception 

Simultaneous bilinguals vs. 
monolinguals 

88 Adults Burgaleta et al., 
2016 

Thalamus* Naming or word 
Generation, lexical 
decision & reading 

Simultaneous bilinguals vs. 
monolinguals 

88 Adults Burgaleta et al., 
2016 

Globus pallidus 
* 

Semantic monitoring of 
speech production 

Simultaneous bilinguals vs. 
monolinguals 

88 Adults Burgaleta et al., 
2016 

Note. Table 1 summarizes bilingual studies discussed thus far that have revealed gray matter density, volume or 
cortical thickness differences. Brain regions are organized by cortical and subcortical sections, divided into specific 
brain regions, accompanied by brief information on the associated cognitive process and the participants in each 
study for reference. * Reflects bilateral differences found in the specific brain region. 

White Matter Studies 

Pliatsikas et al. (2015) performed a study with 20 sequential late bilinguals (mean age= 

31.9 years; mean age of acquisition = 10.2 years; SD = 8.06) with various L1 backgrounds and 

compared them to 25 English monolinguals (mean age = 28.2 years; SD = 5.33). A tract-based 

spatial statistical analysis was used. Results revealed higher FA values for the sequential 

bilinguals in four tracts. The first white matter tract affected in the bilingual group was the 

inferior fronto-occipital fasciculus bilaterally (p < 0.05, corrected). This tract has been heavily 

implicated in L2 learning (Pliatsikas et al., 2015) and semantic processing (Leclercq et al., 2010). 

Therefore, the authors of this study took this to suggest that higher FA in the inferior fronto-

occipital fasciculus bilaterally may result in more efficient semantic processing in bilinguals. The 

second white matter tract identified was the genu of the corpus callosum, including the genu, the 

body, and the anterior part of the splenium bilaterally (p < 0.05, corrected). While the role of the 

corpus callosum in language processing is not fully understood, it has been implicated in 

effective interhemispheric communication and executive functioning (Just et al., 2006; Zhang et 
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al., 2014). The authors suggested the results may indicate enhanced executive functioning in 

bilinguals due to increased FA in the corpus callosum. The final two tracts found to be affected 

by bilingualism in this study were the superior longitudinal fasciculus (p < 0.05, corrected) and 

the uncinate fasciculi (p < 0.05, corrected). The uncinate fasciculi and the superior longitudinal 

fasciculus white matter tracts constitute, respectively, a dorsal and ventral white matter pathway 

connecting Broca’s area to temporal areas (i.e., the superior temporal gyrus and middle temporal 

gyrus), which have been implicated to be involved in phonological, semantic, and syntactic 

processing (Friederici, 2012). Therefore, increased white matter in the uncinate fasciculi and the 

superior longitudinal fasciculus would suggest improved phonological, semantic, and syntactic 

processing in bilinguals (Pliatsikas et al., 2015). 

Schlegel et al. (2012) utilized longitudinal DTI to track the structural white matter 

changes in the brain that occur with learning a new language. Monthly DTI scans were 

performed on each participant over nine months. Participants included a training group of 11 

English monolingual learners, who took a 3-term intensive modern standard Chinese language 

course and a control group of 16 English monolingual non-learners, with a mean age of 20.05 for 

both groups. White matter changes were found both within and beyond traditional language 

processing regions in the learning group relative to the control group (p < .05, after FDR 

correction for multiple comparisons). Language learners demonstrated greater FA in traditional 

left hemisphere language tracts between language areas, their right hemisphere analogous, areas 

in the temporal region, and across the genu of the corpus callosum (Schlegel et al., 2012). Single 

region networks (i.e., BA45-transverse frontopolar gyrus and sulcus; planum polare-Anterior 

superior temporal gyrus; planum temporale-Posterior superior temporal gyrus) and between 

region networks were found (i.e., transverse frontopolar gyrus and sulcus-Caudate nucleus, 
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Frontomarginal gyrus and sulcus-Caudate nucleus, anterior superior temporal gyrus-

Frontomarginal gyrus and sulcus). The authors of this study concluded that structural plasticity 

plays a role in language learning, even among adults. They further added that the changes 

observed between frontal cortical regions and the caudate nucleus support previous findings that 

language learning entails developing control networks to mediate switching between languages. 

Last, results from this study were implicated in supporting adult brain plasticity. The adult brain 

demonstrates the capacity to reorganize and learn by expanding the functionality of networks by 

altering the underlying anatomy. 

Luk et al. (2011) conducted a study with 28 healthy older adults. Fourteen participants 

were monolingual speakers, and 14 were lifelong bilinguals (L2 acquired before 11) with a mean 

age of 70.5 years between groups. DTI results demonstrated significantly increased FA values 

for bilinguals compared to monolinguals in the corpus callosum (p < 0.05, corrected) that 

extended to the superior and inferior longitudinal fasciculus (p < 0.05, corrected). It was 

hypothesized that the engagement of more distributed brain networks in older adults may reflect 

stronger working memory connectivity between brain regions, facilitating information transfer, 

which may be one mechanism underlying the bilingual advantage observed in executive function 

performance (Luk et al., 2011). 

Overall, bilingualism appears to facilitate greater white matter changes in traditional 

language areas (i.e., frontal and temporal regions) and the implementation of regions not 

typically found to be involved in language processing (i.e., corpus callosum). The white matter 

differences appear to be found in both adults and older adult bilinguals (Luk et al., 2011; 

Pliatsikas et al., 2015; Schlegel et al., 2012). The bilingual experience further appears to 

facilitate creating a more complex integration of various brain regions to manage both languages 
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in both adults (Luk et al., 2011; Pliatsikas et al., 2015). Therefore, results from the gray matter 

bilingual studies may suggest the acquisition of a second language facilitates reorganization, and 

stronger connectivity between brain regions, facilitating information transfer. Table 2 

summarizes the white matter tract findings by brain region and associated cognitive process. 

The next chapter continues to build on our understanding of the changes in the bilingual 

brain. Studies discussed include research on functional activation differences within eight core 

cognitive areas: language, executive functioning, visuospatial, working memory, memory, 

attention, motor and sensory. Functional activation research makes important contributions to 

our understanding of changes in functional anatomy occurring as a result of our experiences. 

Knowledge of how the brain responds to an experience such as acquiring a second language is 

critical, as it aids in our understanding of the mechanisms of repair and cognitive recovery. 

Understanding neuroanatomical, neurochemical, and functional changes may also facilitate and 

implement appropriate rehabilitation interventions (Crosson et al., 2010; Smith et al., 2004). 
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Table 2 

White Matter Tracts in Bilingual Populations 

Brain Region Associated Cognitive Processes Groups N Age Study 
  Networks within a 

region 
   

Frontal      
BA45 
/TFPG 

Lexical-semantic production 
retrieval of long-term memories 

L2 foreign language 
Learners vs. 
monolinguals 

27 Adults Schlegel et 
al., 2012 

Temporal      
PP*/ 
aSTG* 

Connectivity with aSTG phrase 
structure, syntactic violations, 
high temporal details of speech 

L2 foreign language 
Learners vs. 
monolinguals 

27 Adults Schlegel et 
al., 2012 

PT*/ 
pSTG* 

Connectivity with pSTG 
Syntactic/semantic integration, 
semantic violations 

L2 foreign language 
Learners vs. 
monolinguals 

27 Adults Schlegel et 
al., 2012 

  Networks between 
regions 

   

CC* Effective interhemispheric 
communication and executive 
functioning 

Sequential late 
bilinguals vs. 
Monolinguals 

45 Adult Pliatsikas et 
al., 2015 

SLF/ 
UF 

Connects Broca’s area to 
temporal areas phonological, 
semantic and syntactic 
processing 

Sequential late 
bilinguals vs. 
Monolinguals 

45 Adult Pliatsikas et 
al., 2015 

Frontal/subcortical      
TFPG* 
/CN* 

Retrieval of long-term 
memories lexical-semantic 
control 

L2 foreign language 
Learners vs. 
monolinguals 

27 Adults Schlegel et 
al., 2012 

FMGS* 
/CN* 

Retrieval of long-term 
memories lexical-semantic 
control 

L2 foreign language 
Learners vs. 
monolinguals 

27 Adults Schlegel et 
al., 2012 
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Brain Region Associated Cognitive Processes Groups N Age Study 
Frontal/temporal     
aSTG/ Phrase structure, syntactic 

violations, high temporal details 
of speech 

L2 foreign language 
Learners vs. 
monolinguals 

27 Adults Schlegel et 
al., 2012 

FMGS Retrieval of long-term 
memories 

    

Frontal/occipital      
IFOF * L2 learning & semantic 

processing 
Sequential late 
bilinguals vs. 
monolinguals 

45 Adult Pliatsikas et 
al., 2015 

Frontotemporal/frontoparietal     
CC & SLF Producing and understanding 

language 
Lifelong bilinguals vs. 
monolinguals  

28 Older 
adults 

Luk et al., 
2011 

Ipsilateral 
temporal / 
Occipital 

     

CC &ILF  Visual processing and language 
comprehension, semantic 
processing 

Lifelong bilinguals vs. 
monolinguals 

28 Older 
adults 

Luk et al., 
2011 

Note. Abbreviations include: inferior fronto-occipital fasciculus (IFOF), corpus callosum (CC) connecting the left 
and right cerebral hemispheres, superior longitudinal fasciculus (SLF) ects the frontal, occipital, parietal, and 
temporal lobes, uncinate fasciculi (UF) connects parts of the limbic system such as the temporal pole, Transverse 
frontopolar gyrus and sulcus (TFPG) frontal, Frontomarginal gyrus and sulcus (FMGS) frontal, BA 45 (triangular 
part of IFG) frontal, Caudate nucleus (CN) subcortical area, Anterior superior temporal gyrus (aSTG), Posterior 
superior temporal gyrus (pSTG), Planum temporale (PT) temporal, Planum polare (PP)-temporal, Superior 
longitudinal Fasciculus SLF, Inferior longitudinal fasciculus (ILF), inferior longitudinal fasciculus/inferior fronto-
occipital fasciculus bilaterally ILF/ IFOF* 
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Chapter III: DIFFERENCES IN FUNCTIONAL ACTIVATION IN BILINGUALS 

Exploring functional activation patterns is essential for identifying brain injury or disease 

on cognitive systems and developing appropriate rehabilitation treatments (Crosson et al., 2010; 

Smith et al., 2004). Functional imaging techniques provide clinicians the opportunity to localize 

brain function and understand how experiences, such as the acquisition of a second language, 

influence cognitive utilization. Identifying functional brain activation patterns in healthy 

demographic groups allows for establishing a comparison group for baseline functioning and 

identifying cognitive deficits better. More appropriate guidelines for treatment can then be 

established and implemented. 

Functional imaging studies in bilinguals continue to rapidly grow, with research 

demonstrating differences in functional activation patterns compared to monolinguals (Costa & 

Sebastián-Gallés, 2014). Given the importance of identifying baseline patterns to identify deficits 

in functioning, this chapter focuses on summarizing articles on functional activation patterns in 

healthy bilingual individuals. The goal of this portion of the review is to allow the reader to 

identify the unique functional activation patterns to aid in establishing more adequate treatment 

guidelines for brain-injured bilinguals. 

This chapter begins by briefly discussing functional activation patterns in the universal 

language network, leading to discussing bilingual functional imaging studies. Bilingual studies 

have been organized into eight core cognitive areas: language, executive functioning, 

visuospatial, working memory, memory, attention, motor and sensory. However, it is important 

to note that the brain’s high interconnectivity and cohesiveness make it difficult to parcel out the 

overlapping effects of the various domains of cognition, especially parceling out executive 

functioning, which often plays a large role in numerous tasks. Last, this chapter provides 



 

38 

clinicians with a table for reference that summarizes the differences in functional activation 

patterns in each of the eight cognitive domains (i.e., language, executive functioning, 

visuospatial, working memory, memory, attention, motor and sensory). 

Effects of Bilingualism on Language Functioning Brain Regions 

Concerning language processing, research has demonstrated that humans possess only 

one brain circuitry for language, primarily in the left hemisphere (Friederici, 2012), with 

bilinguals also demonstrating usage of this circuitry to process their two languages (García-

Pentón et al., 2014). While findings have demonstrated the utilization of a universal language 

circuity, differences in the amount of activation in the classic language regions and the 

integration of other brain regions have been demonstrated in bilingual brains (García-Pentón et 

al., 2014). To understand activation differences in the language circuitry better, a brief discussion 

of the classic linguistic system is discussed, followed by highlighting differences in activation 

patterns in bilinguals. 

The Universal Language Network 

As discussed in the previous chapter, there is a consensus on a classic language 

processing model. The model consists of a motor speech center (i.e., BA 44 and BA 45), the 

sensory speech center (i.e., Wernicke’s area), and a bundle of nerve fibers (i.e., arcuate 

fasciculus) that connects the motor and sensory speech centers (Ardila et al., 2016; Fujii et al., 

2016), all of which are typically left-lateralized in most individuals (Catani et al., 2005). 

Language processes also integrate frontal (inferior frontal gyrus), temporal (superior temporal 

gyrus and the middle temporal gyrus), and parietal (inferior and superior parietal lobe) language 

areas (Ardila et al., 2016; Fujii et al., 2016). 
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Broca’s area consists of the pars triangularis and opercularis of the inferior frontal gyrus, 

corresponding to Brodmann’s areas 45 and 44, respectively. Wernicke’s area is the cortical area 

of the posterior potion of the superior temporal gyrus and a part of the supramarginal gyrus, 

corresponding to Brodmann’s area 22 (Ardila et al., 2016; Fujii et al., 2016). 

The classical language areas are interconnected and are part of two major pathways. 

The major pathways include the dorsal stream and the ventral stream. The dorsal stream is 

supported primarily by the SLF and the arcuate fasciculus, which are associated with 

phonological processing. The ventral stream is primarily supported by the inferior frontal-

occipital fasciculus and is associated with semantic processing (Ardila et al., 2016; Fujii et al., 

2016). Both pathways are activated for speech comprehension and production (Catani et al., 

2005). Additionally, speech draws on brain areas such as the caudate nucleus, superior frontal 

gyrus, and superior longitudinal fascicle (Friederici & Gierhan, 2013). While reading utilizes 

visual brain areas such as the fusiform gyrus and the angular gyrus (Golestani, 2012), and 

sentence comprehension includes the temporal lobe (superior temporal gyrus and middle 

temporal gyrus consisting of Wernicke’s area BA 39 and BA 40) and frontal lobe (inferior 

frontal gyrus consisting of Broca’s area (BA 44 and BA 45/Ardila et al., 2016), written language 

utilizes the angular gyrus (BA 39/Ardila et al., 2016). 

When processing auditory language, sounds are first processed in the left middle portion 

of the superior temporal gyrus, words are recognized, and lexical-semantic integration occurs 

(Friederici, 2012; MacGregor et al., 2012). Once the phonological word has been identified, 

syntactic and sentential information needs to be retrieved. Information travels to the frontal lobe 

for syntactic processing in the pars opercularis (BA 44) and the frontal operculum for further 

semantic processing (in BA 45 and BA 47) via different pathways. Ultimately, linguistic 
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information goes back to the temporal lobe for semantic and syntactic integration and optimal 

sentence comprehension (Friederici, 2012). To then articulate speech, the premotor cortex is 

activated (Pulvermüller et al., 2006). The highly dynamic and interactive language cycle has 

been shown to occur in monolinguals and bilinguals when language is processed. However, 

bilinguals demonstrate differences in the amount of activation in classic language regions (i.e., 

Broca’s area and Wernicke’s area) and integrate other brain regions to manage their multiple 

languages (Jasińska & Petitto, 2013; Kovelman, Shalinsky et al., 2008; Li & Grant, 2016). 

Differences in cognitive processes in bilinguals appear to be influenced by the constant joint 

activation of L1 and L2. Research has demonstrated that bilinguals are not able to switch off a 

language; instead, L1 and L2 are in constant competition (Abutalebi & Green, 2007). The next 

few sections focus on studies that have identified differences in language processing in 

bilinguals. 

The Bilingual Impact on The Universal Language Network 

Phonological Processing Differences in Bilinguals 

García-Pentón et al. (2014) conducted a study measuring structural brain network 

differences between early bilinguals and monolinguals. Participants included 13 native Spanish 

monolinguals (mean age = 29.1 years, SD = 6.60) and 13 early Spanish-Basque bilinguals (mean 

age =24.1, SD = 4.62). Eleven of the bilinguals acquired L2 simultaneously from birth, and two 

started to acquire L2 before preschool. Diffusion-weighted MRI tractography techniques and a 

network-based statistical analysis were utilized to detect significantly different networks between 

groups (p < 0.01 corrected). Two primary networks were reported to have stronger connectivity 

in bilinguals than monolinguals (d = 1.17). The first network was comprised of the left frontal, 

parietal, and temporal regions (insula, superior temporal gyrus, pars triangularis of the inferior 
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frontal gyrus, the supramarginal gyrus, par and pars opercularis of the inferior frontal gyrus and 

the medical superior frontal gyrus p = 0.006), all of which are related to language processing 

(Binder & Desai, 2011) and have demonstrated involvement in bilingualism Grogan et al., 2012). 

This network is potentially involved in phonological, syntactic, and semantic interference 

between languages (García-Pentón et al., 2014; Wong et al., 2016). The second network involves 

the occipital gyrus and parietal-temporal regions (left superior parietal gyrus, right superior 

frontal gyrus, left superior parietal gyrus, left superior temporal pole, and left angular gyrus p = 

0.008). The left superior temporal pole and the left angular gyrus have been associated with 

language processing (Binder & Desai, 2011), the left superior occipital gyrus has been found to 

play a role in the high-level visual processing of letters and words (Carreiras et al., 2009), the 

right superior frontal gyrus in language control (Abutalebi & Green, 2007) and the superior 

parietal gyrus has been reported to play a role in the visual-spatial processing during visual word 

processing (Sun et al., 2011). This second network is potentially involved in visual word 

recognition, reading, and semantic processing (García-Pentón et al., 2014; Wong et al., 2016). 

In summary, phonological processing areas show some differences between bilinguals 

compared to monolinguals. The authors took the results to suggest the early simultaneous 

acquisition of a second language facilitates the development of more graph-efficient subnetworks 

to accommodate extra language demands. The development of more graph-efficient subnetworks 

may be devoted to language monitoring, avoiding interference between the two languages, and 

facilitating the processing of both languages (García-Pentón et al., 2014). 

Lexical Sematic Processing in Bilinguals 

Semantics is the area that is most concerned with the representation and processing of the 

meaning of words. Acquiring a second language has been shown to increase the complexity of 
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semantic processing in bilinguals, as the way in which each language is represented in the brain, 

and the relationship between L1 and L2 differs compared to monolingual individuals. Therefore, 

this section discusses studies that have found differences in semantic processing in bilingual 

populations. 

Kovelman, Shalinsky et al. (2008) conducted a study investigating semantic processing in 

bilingual adults compared to monolinguals. Patients included 10 right-handed Spanish-English 

balanced bilinguals (mean age = 19 years) and 10 right-handed monolinguals (mean age = 20 

years). fNIRS imaging was utilized to measure blood flow changes in the brain. Kovelman, 

Shalinsky et al. (2008) found that early bilinguals showed greater signal intensity in the 

dorsolateral prefrontal cortex and inferior frontal cortex compared to monolinguals, while also 

recruiting similar language areas such as Broca’s 44/45; (F(1,19) = 13.9, p < 0.01). Differences 

occurred when bilinguals had to use both or either of their languages. When bilinguals had to use 

one language only, they showed greater signal intensity, as measured by changes in oxygenated 

hemoglobin in the dorsolateral prefrontal cortex and inferior frontal cortex areas (p < 0.05; 

Kovelman, Shalinsky et al., 2008). Bilinguals demonstrated greater activation in the left inferior 

frontal cortex (Broca’s 44/45) when processing English relative to the English monolinguals (t 

(1,9) = 4.30; p < .00). Greater activation of Broca’s 44/45 when processing English in the 

bilingual group may suggest a functional separation of L1 and L2 (Kovelman, Shalinsky et al., 

2008). 

Jeong et al. (2010) conducted a study with 44 healthy right-handed native adult Japanese 

speakers (mean age = 21.6 years) to investigate the cortical representation of L2 vocabulary 

acquired in different modes. Jeong et al. (2010) manipulated whether L2 Korean words by 

Japanese learners were learned through situation-based (real-life) dialogue or from print (written 
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translations learning). Brain activity was measured during subsequent retrieval of words with 

fMRI. A two-level approach for event-related fMRI data was adopted using SPM5, and a voxel-

by-voxel multiple regression analysis was used. Statistical interference on contrasts of parameter 

estimates was also performed using a second-level between subject’s model using a one-sample 

t-test. The statistical threshold in the voxel-wise analysis was corrected p < 0.05 for family-wise 

error. Last, a region of interest analysis was obtained with a threshold of p < 0.05, without 

correction for multiple comparisons. A two-way repeated measure ANOVA was conducted to 

evaluate the effect of the type of learning, the type of test, and the interaction effect between the 

two (i.e., learning and test), with a pairwise comaprision using a Bonferroni correction. Jeong et 

al. (2010) reported that L2 vocabulary retrieval activated the left inferior, middle, and superior 

frontal areas, anterior cingulate cortex, temporal areas, parietal lobule, bilateral insula, and basial 

ganglia (p < 0.05 without correction for multiple comparisons). Results further revealed a 

significant main effect for leaning type (F(1.26, 37.86 = 7.46, p = 0.006). Pairwise comparisions 

following the significant main effect, using a Bonferroni correction revealed that the right 

supramarginal gyrus was more active for second language words learned in a social situation (p 

< 0.001, p = 0.024) while the latter manner (words spoken by a person holding a board on which 

the Japanese translation was written) of learning grew greater activation in the left middle frontal 

area during the retrieval test (p = 0.03). Further, when words that were learned in one condition 

were tested in the other condition (e.g., situation-learned, print tested), results elicited 

significantly more activity in the left triangular part of the left inferior frontal gyrus, F(1.38, 

41.56) = 6.43, p = 0.009), supporting the role of the inferior frontal gyrus in flexible retrieval of 

language two vocabulary. Results reveal that acquiring a second language involves the 

recruitment of multi-element cognitive processes. The left frontal is involved in executive 
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aspects of linguistic information during learning and remembering (Gabrieli et al., 1998). The 

left temporal region, including the hippocampus, is involved in semantic memory, which is 

related to storing the meaning of words (Breitenstein et al., 2005). The left parietal area is 

associated with phonological storage (Paulesu et al., 1993), and the anterior cingulate cortex is 

associated with attention during a verbal task (Jeong et al., 2010). 

Kovelman, Baker et al. (2008) conducted a study to determine whether bilinguals process 

language differently from monolinguals and sought to identify brain areas recruited during a 

language task. The study consisted of 11 Spanish-English right-handed bilinguals and 10 English 

right-handed monolinguals. fMRI was utilized to measure brain activity during a syntactic 

“sentience judgment task.” fMRI analysis revealed bilingual participants demonstrated greater 

BOLD signal intensity and extent in the left inferior frontal cortex; t (1,10) = 2.86, p < .001, 

uncorrected). Furthermore, bilinguals elicited a significantly greater increase in blood 

oxygenation in the left inferior frontal cortex when processing the English language, more so 

than the monolingual group during a semantic judgment task, t (1,9) = 4.30, p < .001 (Kovelman, 

Baker et al., 2008). The authors of this study took the results to suggest that early acquisition of a 

second language promotes greater activation of similar language processes as monolinguals with 

differentiated neural patterns of activation for each language. 

Overall, studies assessing differences in semantic processing in bilinguals revealed that 

the acquisition of a second language promotes greater activation of similar language processes as 

monolinguals but with differentiated neural patterns of activation for each language (Jeong et al., 

2010; Kovelman, Baker et al., 2008). Greater activation appears to happen when processing L2. 

Greater activation and the recruitment of other brain regions (i.e., bilateral insula and basial 

ganglia; Jeong et al., 2010) may suggest differential patterns and functional separation of L1 and 
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L2. The following section discusses differences in functional activation in brain regions utilized 

for executive function skills. 

Executive control is a set of cognitive skills based on limited cognitive resources for such 

functions as inhibition, switching attention, and working memory (Miyake et al., 2000). 

Executive control emerges late in development and declines with age, and supports such 

activities as high-level thought, multitasking and sustained attention. Several studies have 

suggested the executive function enhancement is due to bilinguals continuously activating both 

languages while inhibiting the nontarget language (Bialystok et al., 2012; Costa & Sebastián-

Gallés, 2014; Kroll et al., 2013). This parallel activation of both languages has been 

demonstrated to occur when bilinguals listen, speak, read, and write in either of their two 

languages (Bialystok et al., 2012; Costa & Sebastián-Gallés, 2014; Kroll et al., 2013). The joint 

activation results in constant interaction between the two languages in the form of interference 

and/or support of each language (Jasińska & Petitto, 2013; Kroll & Bialystok, 2013). The 

language interaction has also been demonstrated to be bidirectional from the dominant to the less 

dominant language and vice versa (Jasińska & Petitto, 2013; Kroll & Bialystok, 2013). In 

bilinguals, this constant process of joint language activation has demonstrated greater activation 

of the left dorsolateral prefrontal cortex and the anterior cingulate cortex (Abutalebi & Green, 

2007), which regulate language switching and general executive functions such as conflict, 

control, monitoring, selective attention, and inhibition (Bialystok et al., 2012; Costa & Sebastián-

Gallés, 2014; Kroll & Bialystok, 2013). 

Grady et al. (2015) examined resting-state and task-based fMRI connectivity in 14 older 

adult monolingual English speakers (mean age = 70.6 years) and 14 lifelong bilinguals (mean 

age = 70.3 years) with age of acquisition before 11 years old. Functional connectivity in two 
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brain networks typically involved in executive functions—the frontoparietal control network and 

the salience network—was examined along with the default mode network. To assess functional 

connectivity, the processed resting-state data were analyzed with seed partial least squares. Seed 

PLS is a data-driven multivariate statistical technique that reveals functional activity across the 

entire brain that correlates with some external variable (Grady et al., 2015). Results demonstrated 

stronger intrinsic functional connectivity in the frontoparietal control network; t (62) = 3.7, p = 

0.001) and the default mode network in bilinguals, t (62) = 3.2, p = 0.002) relative to 

monolinguals (Grady et al., 2015). Overall, the older lifelong bilinguals in this study 

demonstrated enhanced network activity relative to their monolingual peers. Enhancement was 

demonstrated in stronger functional connectivity within networks that influence cognitive control 

(Grady et al., 2015). 

Li et al. (2015) evaluated differences in functional connectivity patterns in language 

control regions in spoken language (i.e., dorsal anterior cingulate cortex and the left caudal 

nucleus) among 14 highly proficient Mandarin Chinese Sign Language bimodal bilinguals (mean 

age = 49.5 years) and 15 monolinguals (mean age = 43.5 years). Participants were asked to 

perform a picture-naming task with spoken language or were in a resting state. Differences in 

resting-state functional connectivity in bimodal bilinguals were compared to monolinguals with 

task-related fMRI and resting-state fMRI. Task-related fMRI results were analyzed using a two-

sample t-test to conduct the group difference in activation. For resting-state fMIR results, group 

comparisons were conducted using a two-sample t-test to detect the functional connectivity 

differences between bilinguals and monolinguals. The criteria for multiple comparison correction 

were determined by AlphaSim. A corrected alpha level of 0.05 was set. Results demonstrated 

bimodal bilinguals who used spoken, and sign language demonstrated decreased resting-state 
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functional connectivity between the dorsal anterior cingulate cortex and the left superior 

temporal gyrus (regions involved in spoken language) and left Rolandic operculum (p < 0.05) 

but demonstrated stronger functional connectivity among these regions when performing the 

task. The researchers concluded that bimodal bilinguals may have less synchronized language 

suggesting that the neural substrates of the two languages do not necessarily overlap. (Li et al., 

2015). The decreased activation of brain regions involved in spoken language (i.e., dorsal 

anterior cingulate cortex and the left superior temporal gyrus) in this study may suggest that 

bimodal bilinguals may not need much control compared to monolinguals because the potentially 

nontarget language is in a different modality (sign language). Unlike unimodal bilinguals, whose 

two spoken languages compete for output, bimodal bilinguals can produce two languages 

simultaneously so that there is probably much less competition between language outputs. 

Berken et al. (2016) sought to investigate whether an early versus late second-language 

acquisition would be associated with different patterns of functional connectivity. Participants 

included 16 French-English simultaneous (mean age = 23.3 years) and 18 sequential bilinguals 

(mean age = 25.7 years, L2 age of activation > 5 years). For the resting-state fMRI analysis, data 

were acquired using a T2-weighted EPI sequence. Analysis was performed using a seed-driven 

approach with the CONN software package. Regions of interest included the left and right 

inferior frontal gyrus pars triangularis and BA45. Significant correlations in functional 

connectivity survived a height threshold of uncorrected p < 0.001 and an extent threshold of 

FEW-corrected p < 0.05 at the cluster level. The inferior frontal gyrus plays a significant role in 

speech production and language processing, as well as in nonlinguistic domain-general cognitive 

processes, such as executive control (Berken et al., 2016). Results demonstrated simultaneous 

bilinguals demonstrated stronger functional connectivity between the left inferior frontal gyrus 
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and its right counterpart, as well as the right dorsolateral prefrontal cortex and bilateral inferior 

parietal lobule. Simultaneous also demonstrated greater resting-state functional connectivity 

between the right inferior frontal gyrus and its left counterpart as well as the left inferior parietal 

lobule and the cerebellum. In addition, a regression analysis with the age of acquisition in 

sequential bilinguals demonstrated a significant negative correlation with age of acquisition 

between the left and right inferior frontal gyrus (r = −0.64; p = 0.0001) and the right inferior 

parietal lobule (r = −0.72; p = 0.02). Results suggest the brain is shaped differentially depending 

on the L2 age of acquisition. The earlier the second language is acquired, the greater the resting-

state connectivity between the left and right inferior frontal regions and the right inferior parietal 

region. Acquiring L2 later in life leads to different functional circuitry to attain second-language 

expertise, as evidenced by greater left lateralization of the inferior frontal gyrus (Berken et al., 

2016). 

Overall, brain development in bilinguals appears to be influenced by the age at which L2 

is acquired. Lifelong bilinguals have demonstrated greater functional connectivity (Grady et al., 

2015) and resting-state connectivity (Berken et al., 2016) within executive function networks. 

However, it has also been found that differential language modalities in bilinguals (i.e., sign 

language versus spoken language) play a role in utilizing brain regions (Li et al., 2015). For 

example, Li et al. (2015) found decreased resting-state activation of brain regions involved in 

spoken language. (i.e., dorsal anterior cingulate cortex and the left superior temporal gyrus in 

bimodal bilinguals). These results suggest differential language representations if the modalities 

are different, as the cognitive demand is unique to each language. Unlike unimodal bilinguals, 

whose two spoken languages compete for output, bimodal bilinguals can produce two languages 
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simultaneously so that there is probably much less competition between language outputs (Li et 

al., 2015). 

Attention control is another executive function skill that allows for the ability to focus 

and shift attention selectively (Diamond, 2013). Neuroimaging studies offer insight into group 

differences that may not be manifested as behavioral differences in experimental task 

performance (Kroll et al., 2013). Research has shown that the experience of acquiring a second 

language promotes changes in attentional control regions in bilingual speakers. Studies 

evaluating attentional control brain regions are discussed further in the next section. 

Effects of Bilingualism on Attention Functioning Brian Regions 

Dash et al. (2019) investigated the neurofunctional correlates of the subcomponents of 

attention in 20 healthy young bilinguals (mean age = 32.6 years) and 18 older adult bilinguals 

(mean age = 73.9 years). Variables such as L2 age of acquisition, language usage, and 

proficiency were all taken into account. The fMRI version of the Attention Network Test was 

utilized and speed, accuracy, and BOLD data were collected. The Attention Network Test is a 

combination of a cueing paradigm and the Flanker task. Participants were presented with five 

white arrows on a black background and asked to determine the direction of the target arrow in 

the middle, left or right of the computer screen. MR imaging was performed using a 3T MRI 

Siemens Prisma Fit scanner with a standard 64-channel head coil. To conducted a whole-brain 

analysis, the general linear model in SPM was used. Only effects surviving an uncorrected voxel-

level threshold of p < 0.001 and/or a cluster-level family-wise error corrected threshold of p < 

0.05 were interpreted. The relationship between measures of bilingualism and attention was 

examined by conducting a Pearson correction analysis with adjusted p-values controlling for 

multiple comparisons. fMRI results demonstrated increased neurofunctional activity in the 
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ventrolateral prefrontal cortex (p = 0.001 uncorrected) and the right superior parietal gyrus close 

to the temporal-parietal junction (p = 0.001 uncorrected) in older adult bilinguals relative to the 

young bilinguals. 

Additionally, L2 proficiency was negatively correlated with activation in the frontal 

region and faster reaction times were negatively correlated with activation in frontal and parietal 

brain regions (r = −0.517 p = 0.01). Overall, results demonstrate increased brain activity in the 

frontal and parietal areas during alerting and orienting subcomponents of attention in older adult 

bilinguals. Older adult bilinguals’ advantage in maintaining an alert state was associated with 

increased L2 proficiency on discourse tasks. The authors suggested that results demonstrating the 

benefits of lifelong bilingualism may result in a greater ability to sustain alertness for upcoming 

stimuli (Dash et al., 2019). Another component of executive function that has been found to be 

impacted in bilingual populations is working memory (Lin et al., 2011). Therefore, differences in 

working memory processes are discussed in the following section. 

Effects of Bilingualism on Working Memory Functioning Brain Regions 

Lin et al. (2012) investigated the neural correlates involved in working memory in 

bilingual individuals when tasks were presented auditorily in either L1or L2. Participants 

included 11 Chinese-English bilinguals (mean age = 26.9 years). The 11 participants heard 2-

digit addition problems that required exact or approximate calculations. An fMRI scan was 

performed on a .5-T MR scanner using SPM5 software to analyze the data. Differences in 

activation patterns were considered significant if the voxel-level p-value was less than 0.001 

(uncorrected) and if a cluster-extent threshold of at least 10 contiguous voxels was found. fMRI 

results demonstrated bilateral inferior parietal and inferior frontal region activation in both L1 

and L2. With greater activation in the left inferior frontal area when L2 was used when 
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performing the exact addition task, suggesting that mental calculation performed in L2 may also 

rely on similar brain regions but with an extra load on language processing during mental 

addition in L2 (Lin et al., 2011). Bilinguals’ functional activation patterns in memory are 

discussed in the next section. 

Effects of Bilingualism on Memory Functioning Brain Regions 

In an fMRI study, Majerus et al. (2008) sought to investigate the neural activation 

patterns in order short-term memory and item short-term memory in German-French bilinguals, 

who differed in second-language lexical proficiency (i.e., high and low level of proficient). 

Participants included 11 highly proficient German-French bilinguals (mean age = 19.4 years) and 

11 low proficient German-French bilinguals (mean age = 19.6). Each trial consisted of an 

encoding phase of visual and sequential presentation of four German words, followed by a 

maintenance phase. The retrieval phase consisted of an array of two German words ordered 

horizontally. Participants were required to indicate whether the probe words matched the target 

information in the memory list. In the order memory condition, participants determined whether 

the probe word presented on the left of the screen occurred before the probe word presented on 

the right relative to the order of presentation of the two words in the memory list. In the second 

condition, participants judged whether the probes were identical to the words in the memory list. 

Data collected were processed and analyzed using SPM5 software in MATLAB version 7.0.4. A 

one-sample t-test was utilized to assess the functional connectivity pattern differences for the 

order encoding task, with a p < 0.05 threshold for whole-brain volume and a small volume 

correction at p > 0.05 for a priori locations of interest (Majerus et al., 2008). Results revealed 

that high proficiency bilinguals demonstrated greater activation in the left orbitofrontal cortex (p 

< 0.05) during order encoding and the superior frontal areas (p < 0.05) during order retrieval. 
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Studies have shown that lateral orbitofrontal areas are involved in executive processes during 

working memory tasks while updating compared to inhibition or shifting (Collette et al., 2005; 

Elliott, 2000). The involvement of the orbitofrontal cortex has also been shown to be activated 

during a short-term memory task of sequential information presented in a grouped manner 

(Henson & Rugg, 2003) and is involved in higher-order cognitive skills. Therefore, the authors 

suggested that the recruitment of higher-order functions in highly proficient bilinguals may lead 

to more efficient encoding of serial order information. Furthermore, functional connectivity 

analysis demonstrated recruitment of the intraparietal sulcus (p < .05) and the right and left 

temporoparietal areas (p < .05) during order encoding in the low proficient group, relative to the 

high proficient group. Previous research has shown that these areas are involved in the 

phonological analysis of item information in short-term memory. The authors noted the highly 

proficient bilinguals incorporated greater updating processes, specifically during order encoding 

for a short-term memory task, relative to low proficient bilinguals (Majerus et al., 2008). The 

authors of this study interpreted the results to suggest that low-proficient bilinguals activated 

short-term memory networks in a less efficient and differentiated manner relative to highly 

proficient bilinguals. These results may also provide evidence to explain low proficient 

bilinguals’ poorer storage and learning capacity for verbal sequences (Majerus et al., 2008). The 

next section discusses studies on visuospatial functional activation in bilinguals. 

Effects of Bilingualism on Visuospatial Functioning Brain Regions 

Bilinguals’ functional activation patterns in visuospatial brain regions is an area that is 

lacking research. In reviewing the literature, it was difficult to find a study that only focused on 

measuring brain regions involved in visuospatial functions in bilinguals. However, Ansaldo et al. 

(2015) indirectly found activation differences in brain regions involved in visuospatial functions 
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during an assessment of interference control among bilinguals and monolinguals. The study’s 

objective was to examine the behavioral and neural activation pattern differences of nonverbal 

interference control in older adult bilinguals and monolinguals. Participants included 10 French 

monolingual speakers (mean age = 74.5 years) and 10 late French-English bilinguals (mean age 

= 74.2 years). To measure activation patterns, all participants were tested with the Simon task 

during an event-related fMRI session. Event-related fMRI BOLD responses were collected with 

a 3T Siemen’s scan, and accuracy rates and response times were recorded for congruent and 

incongruent conditions of the Simon task. 

In the Simon task, participants were presented with yellow or blue squares on the left or 

right side of a computer screen. Participants were instructed to press the left key if a yellow 

square appeared and a right response key if a blue square appeared. Congruent trials were those 

in which the stimulus was on the same side as the correct response key. Incongruent trials were 

those in which the reverse was true. Imaging data were analyzed separately using SPM5. 

Regions of four or more contiguous pixels above p = .005 (corrected) detected within the time 

window of 1 to 5 seconds after the stimulus were regarded as activated areas (t-test analysis). An 

ANOVA was also conducted to evaluate each trial across groups and conditions. Results from 

the incongruent condition of the Simon test resulted in monolinguals demonstrating recruitment 

of the prefrontal cortex network, an area known to be involved in the control of interference. 

Alternatively, bilinguals recruited the left inferior parietal lobule (BA 40; p < .001), an area 

known to be involved in visuospatial tasks. This suggests bilinguals do not need to resort to a 

cognitive control circuit to resolve visuospatial conflict, whereas monolinguals did. The authors 

suggested that lifelong bilingualism can promote more efficient use of cognitive control brain 
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mechanisms (Ansaldo et al., 2015). The next section discusses functional activation patterns in 

motor regions in bilingual individuals. 

Effects of Bilingualism on Motor Functioning Brain Regions 

Concerning functional activation patterns in motor functioning brain regions, Raboyeau 

et al. (2010) found greater functional activation of the left premotor cortex and the cerebellum 

among bilinguals relative to monolinguals. The cerebellum has been found to be involved in 

language tasks, such as phonological and semantic fluency, word naming, and reading and 

writing (Smet et al., 2007). The purpose of Raboyeau et al.’s (2010) study was to investigate 

activation patterns of second-language lexical acquisition while controlling for learning phase 

(early and consolidation phase) and word type. Participants included 10 native French speakers 

who learned 80 Spanish words (mean age = 22.7 years) by means of a computer program. The 

words included 40 cognates and 40 noncognates. Data on the neural substrates of lexical learning 

data on activation patterns were obtained with two fMRI scans. fMRI scans were completed at 

the end of each learning phase (i.e., early phase and consolidation). The first scan took place 

after a five-day computerized lexical learning period (i.e., complete an overt picture-naming task 

in both languages), which was considered the early learning phase. The second fMRI scan was 

completed after the participant attained a 100% success rate of naming Spanish words for which 

the participants had been trained. BOLD signal increases related to the learning phase were 

significant at p < 0.005. Results demonstrated that the involvement of the left premotor cortex 

and cerebellum along with the supramarginal were essential in the consolidation of second-

language phonetic representations (Raboyeau et al., 2010). 

Crinion et al. (2006) also found differences in a brain region involved in movement 

functions. Crinion et al. (2006) performed a semantic priming task with highly proficient 
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bilinguals. Participants included 1 group of 11 German-English bilinguals, a second group of 14 

German-English bilinguals, and a third group of 10 Japanese-English bilinguals. The first group 

of German-English bilinguals participated in a PET experiment, while the other two groups 

participated in fMRI experiments. The study was designed to identify language-dependent 

neuronal responses at the level of word meanings. Results demonstrated left anterior temporal 

cortex activity was reduced with semantic primes (compared with unrelated primes) regardless of 

the language and regardless of whether the prime and target were in the same language (p > 

0.05). In contrast to this language general effect, a whole-brain fMRI analysis found language-

specific effects in the head of the left caudate nucleus (p < 0.05) after a small volume correction 

for multiple comparisons), where only semantically related word pairs that were presented in the 

same language showed reduced activity. Other conditions with different language pairs showed 

increased activity in the caudate nucleus. This suggests that the caudate nucleus plays a role in 

monitoring and controlling the language in use (lexical-semantic control), which the authors 

interpreted as a possible mechanism for regulating output given variations in language input 

(Crinion et al., 2006). The next section discusses functional activation patterns in brain regions 

utilized for sensory functions in bilinguals. 

Effects of Bilingualism on Sensory Functional Brain Regions 

Studies that measure functional activation in sensory brain regions have been identified at 

this time. While neuroimaging studies discussed thus far provide clinicians with information on 

how acquiring a second language impacts the development and utilization of brain regions in 

bilinguals, neuropsychological tests take it a step further. Neuropsychological tests are designed 

to provide the clinician with information on how the brain performs with various cognitive skills. 

The next chapter discusses performance differences in bilinguals in eight cognitive areas (i.e., 
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language, executive function, attention, memory, visuospatial, working memory, motor and 

sensory).  
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Table 3 

Functional Activation Patterns in Bilinguals 

Functional Network Associated Cognitive 
Process 

Groups N Study 

Language     
Left frontal, parietal & temporal 
regions 

Control phonological, 
syntactic and semantic 
interference between 
languages 

Early acquired, 
proficient adult 
bilinguals  

26 García-Pentón 
et al., 2014 

OFG & parietal, temporal regions  Word recognition, reading 
and semantic processing 

Early acquired, 
proficient adult 
bilinguals  

26 García-Pentón 
et al., 2014 

DLPFC & IFC/with greater 
activation of BA 44/45 when 
processing L2 

May suggest a functional 
separation of L1 & L2  

Early, young adult, 
balanced bilinguals 

20 Kovelman, 
Shalinsky et 
al., 2008 

left inferior, middle & superior 
frontal areas, anterior cingulate 
cortex, temporal areas, parietal 
lobule, bilateral insula and basial 
ganglia  

L2 vocabulary retrieval Late, adult bilingual 
training study 

44 Jeong et al., 
2010 

Right SMG was more active for L2 L2 words learned in a 
social situation 

Late, adult bilinguals 
training study 

44 Jeong et al., 
2010 

Left inferior frontal cortex when 
processing L2 

Semantic judgment Adult bilinguals  21 Kovelman, 
Baker et al., 
2008 

Decreased resting-state functional 
connectivity between the dorsal 
anterior cingulate cortex and the 
left superior temporal gyrus & left 
Rolandic operculum 

Regions involved in 
spoken language 

Highly proficient 
bimodal adult 
bilinguals 

29 Li et al., 2015 

Executive     
Fronto-parietal control network 
and the default mode network  

Executive control Older adult /lifelong 
bilinguals 

28 Grady et al., 
2015 

left/ right IFG & right DLPFC and 
bilateral inferior parietal lobule 

speech production & 
language processing, & 
executive control 

Early simultaneous 
bilinguals 

34 Berken et al., 
2016 

Bilateral IFG & left IPL & 
cerebellum 

Resting-state functional 
connectivity 

Early simultaneous 
bilinguals 

34 Berken et al., 
2016 

Attention     
Ventrolateral prefrontal cortex & 
right superior parietal gyrus 

Ability to sustain alertness 
for upcoming stimuli 

Older adult 
bilinguals  

38 Dash et al., 
2019 

Working Memory     
Bilateral inferior parietal and 
inferior frontal region activation in 
both L1 and L2 

Exact Addition Task  Adult bilinguals  11 Lin et al., 2011 

Memory     
Left orbitofrontal cortex short-term memory 

network in order encoding 
High proficient 
bilinguals  

22 Majerus et al. 
(2008) 

Superior frontal areas short-term memory 
network in order retrieval 

High proficient 
bilinguals 

22 Majerus et al. 
(2008) 

Visuospatial     
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Functional Network Associated Cognitive 
Process 

Groups N Study 

LIPL  Visuospatial Processing Adult bilinguals  20 Ansaldo et al., 
2015 

Motor     
left premotor cortex and right 
cerebellum  

consolidation of L2 
phonetic representations 

Late, young adult 
bilinguals training 
study 

10 Raboyeau et 
al., 2010 

Reduced left ventral anterior 
temporal lobe activity increased 
activity in the head of the left 
caudate nucleus 

This suggests that the 
caudate nucleus plays a 
role in monitoring and 
controlling the language in 
use (lexical-semantic 
control) 

Highly proficient 
adult bilinguals 

25 Crinion et al., 
2006 

Sensory     
Studies that measure functional 
activation in sensory brain regions 
have been identified at this time 
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CHAPTER III: HOW DOES NEUROPSYCHOLOGICAL TEST PERFORMANCE 

DIFFER IN BILINGUAL INDIVIDUALS? 

Neuropsychological assessments are fundamental tools utilized to clarify how an injury 

has altered the brain’s ability to process information, explain specific changes in behavior, and 

monitor the progression of disease and brain injury on cognitive functioning. Test results further 

aid in determining rehabilitation needs and guide treatment (Harvey, 2012). Normative 

comparisons are critical in interpreting neuropsychology assessments, as they allow for more 

accurate detection of cognitive improvement or decline. Normative date serves as a reference 

group, matched by age, gender, ethnicity, and educational attainment (Harvey, 2012). 

To adequately assess an individual’s abilities, the norms for the test being used should 

reflect similar demographic characteristics to those of the individual being tested (Stricks et al., 

1998). However, often this is not the case. For example, while the bilingual population is 

increasing in the United States (U.S. Census Bureau, 2012), bilinguals are often given tests 

normed for native monolingual speakers (Portocarrero et al., 2007). This practice puts into 

question the validity of test findings and recommendations made by the examiner. Therefore, to 

more appropriately provide services to the increasing bilingual population, it is crucial to learn 

about the performance of bilinguals on standardized cognitive measures that were normed using 

monolingual English speakers. 

This chapter’s objective to summarize studies on bilinguals’ cognitive performance on 

neuropsychological assessments routinely used in clinical practice. The chapter is organized into 

six broad cognitive skills (i.e., language, executive functioning (i.e., attention, working memory), 

memory, visuospatial, motor and sensory) to more efficiently cover several primary areas of 

cognitive functioning. 
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Neuropsychological Performance on Language Tasks 

Commonly used tests to assess language functioning include the Controlled Word 

Association Test (COWA) that assesses verbal fluency and phonemic and semantic fluency 

Gollan et al., 2002), the Boston Naming Tests (BNT; Roberts et al., 2002), which assesses 

picture naming and the Peabody Vocabulary Test-II (PVT-II; Portocarrero et al., 2007) that 

assesses receptive and expressive vocabulary. Studies utilizing these tests with bilingual 

populations and other non-routine tests are discussed to further explore language performance in 

bilingual populations. 

Portocarrero et al. (2007) sought to investigate how nonnative bilingual college students 

who immigrated to the United States and speak English performed on standardized measures of 

English vocabulary and verbal fluency that were normed with monolingual samples. Participants 

included 39 monolingual and 39 bilingual college students. Bilinguals were further divided into 

those who arrived early (before age 10) or late (at age 10 or later). To assess receptive and 

expressive vocabularies, the Peabody Vocabulary Test-III (PPVT-II) and Expressive Vocabulary 

Test (EVT) were administered and to assess verbal fluency, the phonetic and semantic fluency 

takes of the COWA were administered. Performance differences among the bilingual and 

monolingual groups on the Peabody Vocabulary Test-III, EVT, and COWA were assessed by 

conducting two-tailed independent sample t-tests. Scores on the PPVT-II and EVT are presented 

on standard scores, with a mean of 100 and a standard deviation of 15. These scores were 

derived using the normative data provided by each of the test manuals. 

The relationship between age of arrival to the United Sates and performance on the 

measures of English vocabulary was assessed with a two-tailed Pearson’s r correlation. 

Phonemic fluency of the COWA, standard scores were derived using A compendium of 
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neuropsychological tests. Result demonstrates that while both monolingual and bilingual groups 

performed within the average range in expressive and receptive vocabularies, there were 

significant differences. On the PPVT-III (receptive vocabulary), mean standard scores for the 

monolingual and bilingual groups were 109.8 and 98.7, respectively (t (74) = 5.1, p < .001). On 

the EVT (expressive vocabulary), the mean standard scores for the monolingual and bilingual 

group were 107.3 and 94.9, respectively (t (74) = 3.8, p <.001). When the bilingual group was 

split, there were also significant differences between the bilinguals who arrived early (n = 22) 

compared to those who arrived late (n = 17). The mean scores for the early and late bilinguals on 

the PPVT-III were 103.9 and 93.2, respectively (t (35) = 2.9, p < .01). The mean scores for the 

early and late bilinguals on the EVT were 99.3 and 89.3, respectively (t (37) = 2.1, p < .05). This 

finding indicates that the earlier the second language is learned, the better the ability. Differences 

in English vocabulary between the early bilingual group and monolinguals also demonstrated 

significant differences in both the PPVT-III (t (58) = 3.3, p < .01), and EVT (t (57) = 2.2, p < .05. 

Monolinguals performed about one-half of one standard deviation higher than the early bilingual 

group. These results suggest that even when bilinguals arrive in the United States at a relatively 

young age, significant differences in English vocabulary are seen when compared to native 

monolinguals. To determine whether there were significant differences in verbal fluency, three 

independent 2x2 ANOVAs were performed using the participant type (monolingual and 

bilingual) as a between-subjects factor and semantic category (i.e., animals, kitchen, animals) as 

repeated measures factors. Results demonstrated significantly greater mean performance in 

monolinguals relative to bilinguals (monolingual mean = 21.9, bilingual mean = 17.2) in the 

animal category semantic task (F(1,64) = 4.9, p < .05) mean performance between monolinguals. 

There were no differences found in mean standard scores for total number of words produced in 
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phonetic fluency (t (76) = .97, p = .33). English vocabulary and verbal fluency were also 

compared to the age of arrival. Results indicated that the younger the age of arrival the better 

they performed on the PPT-II (r = −.59; p < 0.01) and EVT (r = −.55; p < .001). These findings 

suggest that the age of arrival is significantly correlated with English vocabulary. Overall, it 

appears that age of acquisition is an important factor for the development of receptive and 

expressive language skills in bilinguals. Lower scores on verbal fluency performance on the 

animal category semantic task may have been due to cultural differences. It is possible that the 

bilingual group did not know the English translation (Portocarrero et al., 2007). 

Gollan et al. (2002) sought to explore semantic and letter fluency performance in 

Spanish-English bilinguals compared to monolingual populations. Participants included 30 

young adult English-speaking monolinguals and 30 young adult Spanish-English bilinguals. The 

bilingual group reported being proficient in both languages and having a history of early 

acquisition of the second language. However, bilinguals differed on the amount of usage. Fifteen 

(50%) of the bilingual speakers reported speaking exclusively Spanish at home with their 

parents, 9 (30%) reported speaking exclusively Spanish with at least one parent, and 5 (17%) 

reported using both Spanish and English with both parents. Each participant was tested 

individually, and all responses were both written down by the examiner and autotyped. Standard 

instructions for the verbal fluency task were provided; participants were told to say as many 

items as possible that belonged to each category without proper names and without using the 

same words with different endings. Unless otherwise indicated, an alpha level of .05 was used 

for all statistical tests; when t-tests were reported, they were two-tailed tests. A 2x2 ANOVA was 

used with participant type (bilingual and monolingual) and category types as repeated measures 

factors (semantics and letters). Results demonstrated bilinguals produced significantly fewer 
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correct responses relative to monolinguals (F(1, 58) = 18.99, p < .01) with bilinguals showing 

the most difficulty with semantic trials (F(1, 58) = 5.21, p < .05). Monolinguals produced more 

correct responses in all category types including semantic (t (58) = 5.14, p < .01), letter (t (58) = 

2.16, p < .05), and proper name (t (58) = 3.26, p < .01) categories. The difference between 

correct responses between monolinguals and bilinguals was more than twice as large on semantic 

categories as it was on letter categories.The difference in proper name categories was in between. 

Overall, early proficient bilinguals demonstrated poorer performance in verbal fluency semantic 

skills relative to monolinguals. The authors suggested that the bilingual and monolingual 

performance differences could have been attributed to language dominance. While the bilingual 

group in this study all acquired the language early and were proficient in the second language, 

they used the second language less often than the first. In this study, English was the language 

they were tested in, which was the bilinguals’ second language. Less usage of the second 

language may have created cross-language interference, as the bilingual group had to quickly 

activate the less often used language. 

Roberts et al. (2002) performed a study evaluating bilinguals’ performance on the BNT, a 

widely used picture-naming test. Participants included 3 groups of adults: 42 monolingual 

English speakers, 32 proficient Spanish-English bilinguals, and 49 proficient French-English 

bilinguals. All participants were administered the Bosting Naming Test and asked to name all 60 

pictures in English. Strict (responses listed in the BNT booklet) and lenient types of scoring were 

used. Eighteen item variants were used, in which synonyms were accepted. Mean scores for the 

monolingual group were high: 50.9 (strict) and 53.9 (lenient), and both the bilingual groups 

obtained much lower scores. Mean scores for the Spanish group were: 42.6 (strict), 43.9 

(lenient). Mean scores for the French group were: 39.5 (strict) and 41.34 (lenient). An ANOVA 
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indicated that the 3 groups differed with strict scoring (F(2, 12) = 35.74, p < .0001). Lenient 

scores also differed among the groups (F(2,120) = 41.61, p < .0001). The Tukey HSD test for 

unequal group sizes further confirmed that the monolingual group demonstrated higher scores 

than both bilingual groups (p < .002) for both strict and lenient scoring. The bilingual groups did 

not demonstrate differences among each other (p > .15). The authors suggested the results 

provided support that the BNT norms should not be used by clinicians when working with 

bilinguals, even when they are equally proficient in each language. Results also demonstrated 

differences among the bilingual groups, suggesting further research is needed to determine 

variables that may be potential influencers. Differences in cultural backgrounds were suggested 

to be a potential factor. 

In summary, bilinguals appear to perform poorer on receptive (PPVT-II) and EVT 

relative to monolinguals even when bilinguals acquire the language early. However, there 

appears to be a greater difficulty when the second language is acquired late (Portocarrero et al., 

2007). Bilinguals also demonstrated poorer performance on semantic category tasks (Gollan et 

al., 2002; Portocarrero et al., 2007), with particularly greater difficulty on the animal category 

semantic task (Portocarrero et al., 2007). Bilinguals further demonstrated poorer performance on 

picture-naming tasks. However, it is important to consider that, as indicated in Gollan et al. 

(2002), factors such as the history of usage may influence the quality and speed of activation of 

lexical skills in bilinguals. Receptive and expressive language skills are also culturally 

influenced, as mentioned as a potential explanation for poorer picture-naming performance in the 

bilingual group, due to a lack of exposure to certain items presented (Roberts et al., 2002). 

A considerable body of evidence has further accumulated to suggest that bilingualism 

promotes cognitive differences beyond the linguistic domain. This is evidenced by bilinguals’ 
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performance on a variety of neuropsychologic tests. The next section further identifies bilingual 

studies in seven cognitive domains (i.e., executive functioning, attention, memory, working 

memory, visuospatial, motor, and sensory skills). 

Neuropsychological Performance on Executive Functioning Tasks 

Executive functions consist of a set of cognitive processes that aid in planning, 

organizing, and initiating to achieve the desired goal. Executive functions also help sustain 

attention and promote the regulation of emotions. Literature with bilingual individuals has shown 

evidence suggesting that the acquisition of a second language enhances executive functions 

compared to monolingual individuals (Bialystok et al., 2008, 2010; Carlson & Meltzoff, 2008; 

Gold et al., 2013; Salvatierra & Rosselli, 2010). Bilinguals have demonstrated advantages in 

executive control in studies with children (Bialystok et al., 2010; Carlson & Meltzoff, 2008) and 

older adults (Bialystok et al., 2008; Gold et al., 2013; Salvatierra & Rosselli, 2010). Studies 

supporting the bilingual executive function advantage have also been found in young adults; 

however, results were mixed. Some studies found an advantage in executive functions in 

bilingual adults (Bialystok, 2007), while others failed to find evidence to support the executive 

function advantage (Paap & Greenberg, 2013). Mixed results among bilingual adults may be due 

to more variability in the maturing or declining brain than young adults operating at peak 

efficiency, making it difficult to demonstrate group differences. Bilingual studies that have 

demonstrated enhancement in executive functions have attributed this enhancement to bilinguals’ 

constant practice with selectively attending to one language, suppressing the nontarget language 

and switching back and forth from L1 to L2. This language process is a critical system for 

effective communicating for bilinguals (Bialystok, 2007; Green & Abutalebi, 2013). 
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Inhibitory control is an aspect of executive function that involves the intentional process 

of focusing one’s attention when there is conflicting information and only selecting the relevant 

information (Bialystok et al., 2008; Carlson & Meltzoff, 2008). Research has suggested that 

inhibitory control may be involved in the management of multiple linguistic systems and that 

bilinguals utilize inhibitory control to manage their languages. More specifically, inhibitory 

control involvement in language processing in bilinguals has been suggested to result from 

bilinguals continually inhibiting the nonrelevant language when speaking (Bialystok et al., 2008; 

Carlson & Meltzoff, 2008). 

A study by Bialystok et al. (2008) revealed that bilinguals performed better on executive 

inhibitory control tasks relative to monolinguals. There were 96 participants divided among 24 

young monolinguals (mean age = 20.7 years), 24 young bilinguals (mean age = 19.7), 24 older 

monolinguals (mean age = 67.2 years, and 24 older bilinguals (mean age = 68.3) years). The 

bilinguals included a wide range of languages. Bilingual participants also varied in the age of 

acquisition of the second language. Fourteen acquired the second language early, 16 acquired the 

second language late. All bilingual groups reported having high proficiency in the second 

language. Executive control tasks administered included the Simon arrows task, the Stroop color-

naming task and the sustained attention to response task (SART). The Simon task is a computer 

test with three tasks using directional arrows as stimuli and conditions that vary in their demands 

for cognitive control. The tasks include a control task, a measure of response inhibition or ability 

to override a habitual response to a familiar stimulus, and a conflict condition. The Stroop color-

naming task was also a computer-administered test that included four conditions. It consists of a 

control (color-naming speed), word reading control, congruent color naming, and word reading 

in conflicting colors. The SART is a measure of sustained attention. For the SART’s task, 
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numbers 1-9 are presented in the center of a computer screen in random order. The participant is 

asked to press the response key as quickly as possible, except when the number three appears. 

Means on the SART include reaction time to respond to each new stimulus and the number of 

errors committed by responding when the digit is a three. 

Results demonstrated bilinguals performed better on executive control tasks. A two-way 

ANOVA for age and language on the Simon task revealed monolinguals demonstrated higher 

error rates (F(1, 92) = 5.28, p < .02). A two-way ANOVA for age and language on the Stroop 

effect revealed smaller Stroop effects among bilinguals (F(1, 44) = 7.74, p < .008). Overall, all 

participants made very few errors in the SART test. Young monolinguals produced an average of 

3.8 errors (SD = 3.5), young bilinguals produced 4.1 errors (SD = 2.7), older monolinguals 

produced 3.1 errors (SD = 3.2), and older bilinguals produced 5.3 errors (SD = 5.4). Error rates 

did not differ among any language group (F(1, 92) =1.92), or age group (F < 1). For reaction 

time, younger participants were faster relative to older participants (F(1, 92) = 28.17, p < .0001), 

with no difference between language groups (F < 1). The authors attributed the bilingual 

advantage in executive function to bilinguals’ constant need to suppress interference from L2 

(Bialystok et al., 2008). However, results also demonstrated no differences among groups on the 

SART task, a test of response inhibition. The authors took these results to suggest that 

bilingualism has different effects on interference suppression and response inhibition. It is 

suggested bilinguals rely more on inhibition suppression than response inhibition processes. 

 Another important cognitive skill that has been linked to executive functioning is 

working memory. Working memory refers to a system required to maintain information in an 

accessible state in the face of concurrent processing, distraction, and/or attention shifts (Conway 

et al., 2002). Research has demonstrated that working memory is a process involved in foreign 
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language and native language processes (Engel de Abreu, 2011). Assessments most often utilized 

to measure working memory include simple span tasks that require maintaining information over 

a short period and with complex span tasks that, in addition to storage, also involve an explicit 

concurrent processing task. While there is little research investigating working memory in 

bilinguals, there is a report of more efficient working memory processing in bilinguals. 

Neuropsychological Performance on Working Memory Tasks 

A bilingual advantage has previously been shown on nonverbal working memory but not 

verbal working memory (Luo et al., 2013). Luo et al. (2013) investigated whether younger and 

older monolingual and bilingual adults demonstrate performance differences on verbal and 

spatial working memory tasks. The memory tasks varied from simple to complex span tasks 

involving either verbal or spatial material. Participants included 58 younger adult monolinguals, 

99 younger adult bilinguals, 60 older adult monolinguals, and 60 older adult bilinguals. The 

word span and alpha span tasks were used to assess verbal memory span. Each task consisted of 

14 lists of common concrete nouns, which varied in length from 2 to 8 words, with 2 lists of each 

length. In the word span task, participants recalled the words in the original order; in the alpha 

span tasks, participants mentally rearranged the words to recall them in alphabetical order. Alpha 

span was considered to be the more complex task. 

The Corsi block test was used to assess spatial memory span. Ten blue locks secured on a 

white platform were numbered 1-10; the numbers were only visible to the examiner. The 

examiner tapped on the blocks in a predetermined sequence. The task consists of forward and 

backward subtasks, with sequences varying in length from two to nine blocks. The task was to 

repeat the sequence in its original order in the forward condition and in reverse order in the more 

complex backward condition. Results demonstrate bilinguals outperformed monolinguals on 
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spatial span tasks (F(1,274) = 8.44, p < .004), but remembered fewer items than monolinguals in 

verbal span tasks (F(1, 272) 4.14, p < .04). The authors argued that the advantages demonstrated 

are not due solely to advantages in working memory. Rather, they claimed the tools needed to 

outperform on such tasks result from bilingual advantages in executive functions such as 

switching (Bialystok et al., 2008; Luo et al., 2013). Results may also suggest working memory 

advancements appear to only be exhibited in nonverbal working memory skills and that when 

language is incorporated, it compromises bilinguals’ performance. 

Neuropsychological Performance on Visuospatial Tasks 

Concerning bilingual visuospatial abilities, Blom et al. (2014) revealed that low-SES 

bilingual children outperformed monolinguals on visuospatial tasks. The study utilized data 

collected as part of a study conducted in Messer (2010). In Messer’s study, Turkish-Dutch 

bilingual children and monolingual Dutch children were compared at ages four years (wave one), 

five years (wave two), and six years (wave three). Twenty children in the monolingual group 

were removed due to their parents being foreign-born and sometimes using Dutch. Two children 

in the bilingual sample were also removed due to no interview data. Therefore, participants in the 

study included 68 bilingual Turkish-Dutch children (mean age = 2.6 years) and 52 monolingual 

Dutch children (mean age = 2.1). Visuospatial working memory was assessed with the dot-

matrix task and odd-one-out task. In the dot-matrix task, a dot appears on the compeer screen for 

two seconds. After two practice trials, the test begins with a block of six trials. The participant is 

first only presented with one dot in the matrix, which increases to a block of six trials with a 

sequence of seven dots presented across the matrix. In the odd-one-out task, three shapes are 

presented in different boxes presented in a row. The participant is to identify the odd-one-out 

shape. Both the dot-matrix and odd-one-out task items to remember increase progressively over 
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successive blocks. Verbal working memory was assessed with forward digit recall and backward 

digit recall. Digit recall tasks were selected because it was assumed that recalling digits is less 

dependent on language level than (non) word or listening recall (Messer, 2010). At age six, 

bilinguals demonstrated overall better performance relative to monolinguals (F(4, 105) = 4.40, p 

= .003). A univariate analysis of covariance (ANCOVA) demonstrated significant differences in 

performance on the dot-matrix task (F(4, 105) = 4.0, p = .04), backward digit recall (F(4, 105) = 

17.1, p = <.001), and the odd-one-out task (F(4, 105) = 3.5, p = .06). However, the authors of the 

study believed that the visuospatial advantage may be due to the involvement of executive 

control and did not represent an actual advantage in visuospatial processes (Luo et al., 2013). 

Neuropsychological Performance on Memory Tasks 

Concerning bilinguals’ performance on memory tasks, studies suggested bilinguals 

demonstrate poorer performance relative to monolinguals. However, bilingualism’s memory 

performance has been suggested to be largely dependent on executive function skills (Luo et al., 

2013). Memory assessments are commonly based on verbal recall and recognition. Examples are 

tasks that require an individual to recall a list of words over various different trials, such as the 

Rey Auditory Verbal Learning Test (RAVLT). Several studies have revealed that bilinguals 

recall fewer words than monolinguals on verbal recall and recognition tasks (Gollan & Kroll, 

2001; Kroll & Groot, 2005), which may impact performance on verbal memory learning tasks. 

However, researchers have not determined if bilingualism’s negative effect on verbal recall and 

recognition is due to actual poor verbal memory or deficits in verbal processing. 

Ransdell and Fischler (1987) conducted a study to investigate bilingualism’s influence on 

memory skills. Participants included 28 native English-speaking bilinguals and 28 native English 

monolinguals. Age ranged from 17-35 years. Only English words were used in the study to avoid 
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activation of the second language, given that both groups were native English speakers. Each 

participant was tested on four verbal memory tasks: episodic, recognition, lexical decision object 

naming, and free recall. The four tasks were administered on a computer screen with stimuli 

presented in the center of the screen. Stimuli for the picture-naming tasks were presented on 

paper, and naming times were measured manually by the examiner. A 2x2x2 mixed test ANOVA 

was performed, and a significance level of p <.05 was adopted. Evidence demonstrated 

monolinguals were significantly faster in responding relative to bilinguals (F(1, 54) = 6.40, p < 

.02) and bilinguals demonstrated slower performance on the list recognition task (F(1,54) = 

12.93, p < .001) and lexical decision task (F(1,54) = 11.31, p < .001; Ransdell & Fischler, 1987). 

Results show that even when bilinguals and monolinguals are compared in their native dominant 

language, there is still a bilingual disadvantage in verbal memory skills, suggesting poor 

performance relative to monolinguals (Ransdell & Fischler, 1987). 

  However, when nonverbal memory skills were assessed in bilinguals, a slight bilingual 

advantage in older adult bilinguals was revealed (Wodniecka et al., 2010). Wodniecka et al. 

(2010) investigated nonverbal memory skills in bilinguals when compared to monolinguals. 

Participants included 44 young adults (mean age = 20.5 years) and 39 older adults (mean age = 

71.9 years). In each age group, about half of the participants were monolingual English speakers, 

and the other half were bilingual speakers. Bilingual speakers rated being highly proficient in 

both L1 and L2. Participants were shown a series of L2 adult faces consisting of 80 critical and 

40 filler items. The facial stimuli were presented at a rate of two seconds each. Following the 

presentation of the items, a list of 140 faces was presented for recognition under either inclusion 

or exclusion instructions. A group mixed ANOVA (age x lag x language) on recollection scores 

demonstrated a bilingual advantage in recollection scores (F(1, 79) = 2.58, p = 0.11). A follow-
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up lag x language group ANOVA for each group was conducted. Results revealed the older 

bilingual group demonstrated a significant effect on lag (F(3, 111) = 13.04, p < 0.001) and a 

nonsignificant trend, suggesting higher recollection scores for bilingual participants (F(1, 37) = 

2.79, p = 0.11; Wodniecka et al., 2010). Results demonstrated that when verbal portions of 

memory tasks are removed, bilinguals’ performance increases, suggesting interference from 

language skills. 

While additional research needs to be conducted, current studies suggest that bilinguals’ 

verbal memory skills are poor relative to monolinguals, even when bilinguals are tested in their 

native dominant language (Ransdell & Fischler, 1987). However, bilinguals’ performance on 

memory tasks appears to be influenced by language overload. This is evidenced by their 

improved performance on nonverbal memory tasks (Wodniecka et al., 2010). The next section 

discusses studies found on bilinguals’ performance on visuospatial tasks. 

Neuropsychological Performance on Motor Tasks 

Concerning motor functioning, the cerebellum was traditionally considered to be 

exclusively involved in the coordination of voluntary movement, gait, posture, balance, and 

motor speech. However, more recent findings provide evidence of a cerebellar contribution to 

linguistic function. Smet et al. (2007) demonstrated the cerebellum’s involvement in various 

linguistic functions, such as semantic fluency, agrammatism (at morphological and sentence 

level), word naming and word finding, and reading and writing problems. However, the precise 

nature of the cerebellum contribution is still unclear. No studies that measure motor performance 

have been identified at this time. 
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Neuropsychological Performance on Sensory Tasks 

Concerning bilinguals’ performance on sensory tasks, Marian et al. (2018) investigated 

whether the experience of acquiring a second language shapes the way individuals process 

auditory and visual information. The study was based on the McGurk effect that discovered that 

when people hear a speech sound (e.g., “ba”) and see a conflicting lip movement (e.g., “ga”), 

they recognize it as a completely new sound (e.g., “da”). This finding suggesting that the brain 

fuses input across auditory and visual modalities demonstrates that what we hear is profoundly 

influenced by what we see. Participants included 17 monolinguals (mean age = 21.7 years), 18 

early bilinguals (mean age = 20.4 years), and 16 late bilinguals (mean age = 21.4 years). Stimuli 

consisted of audiovisual and auditory-only speech syllables (e.g., “ba”), and there were 

congruent and incongruent audiovisual conditions. In the congruent condition, the auditory and 

visual input matched. In the incongruent condition, the auditory input was a sound produced with 

the lips (i.e.,” ba,” or “pa”), and the video input was of a sound produced at the velar position 

(i.e., “ga” or “ka”). The audiovisual stimuli were presented within-subjects in a quiet condition 

(i.e., no background noise) and noisy auditory conditions (i.e., six-talker babble). The 

audiovisual stimuli were used to assess the extent to which individuals attended to the visual 

information to perceive auditory inputs. Auditory-only allowed examiners to test for a standard 

speech-in noise deficit and served as a baseline for auditory congruent and incongruent 

conditions. Results demonstrated bilinguals experienced significantly more audiovisual-

integration relative to monolinguals (F(1,28) = 6.97, p = 0.01), with no main effect of English 

proficiency (F(1,44) = 0.54, p = 0.47). A pairwise comparison of each language group was then 

conducted with Bonferroni corrections for multiple comparisons (p < 0.016 was considered 

significant). Results demonstrated late bilinguals experienced significantly more audiovisual-
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integration than monolinguals (F(1,28) = 6.97, p = 0.01), with no effects or interactions with 

English proficiency (both p > 0.4). The same results were observed with early bilinguals (F(1,31) 

= 6.60, p = 0.02), with no effects of English proficiency or interactions (both p > 0.2). Last, early 

and late bilinguals did not differ from each other (F(1,29) = 0.43, p = 0.88), nor was there a main 

effect or interaction with English proficiency (both p > 0.5). The authors suggested that 

bilinguals rely on visual information more than monolinguals to comprehend speech and that this 

bilingual effect was not impacted by the level of proficiency (Marian et al., 2018). 

Overall, research has demonstrated that bilinguals show a disadvantage on verbal tasks 

but demonstrate an advantage on nonverbal memory, working memory, and executive function 

tasks (i.e., inhibitory control) compared to monolinguals. Bilinguals outperformed monolinguals 

on nonlinguistic tasks with greater audiovisual integration during speech sound tasks. It appears 

that managing multiple linguistic systems involve greater integration of both visual and audio 

stimuli to adequality process language, compared to monolinguals. Given that the tests 

administered to bilinguals in the studies included in this review are normed for monolingual 

individuals, further research should be conducted in this area to determine moderating variables 

in performance. While the studies summarized in this portion of this review provide clinicians 

with insight into bilinguals’ cognitive processes, it does not provide an accurate representation of 

bilinguals’ true performance in each cognitive category. Administering neuropsychological tests 

to bilingual populations that have been normed for monolingual individuals creates an additional 

overload on bilinguals’ cognitive systems that monolinguals are not faced with, given that they 

do not have two competing language systems while performing the test. However, hypotheses 

can be drawn from the data collected that can aid in developing more appropriate measures for 
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individuals with multiple linguistic systems. Summarizing bilinguals’ performance on 

neuropsychological tests normed for monolinguals, Table 4 is provided for reference. 
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Table 4 

Neuropsychological Performance Differences in Bilinguals 

Neuro-Test Cognitive Task Significant Differences Age Study 
Language     
PPVT-II Receptive and 

expressive vocabularies 
Early > late bilinguals Adults Portocarrero et al., 

2007 
 EVT Receptive and 

expressive vocabularies 
Early > late bilinguals Adults Portocarrero et al., 

2007 
PPVT-II Receptive and 

expressive vocabularies 
Early bilinguals < 
monolinguals 

Adults Portocarrero et al., 
2007 

EVT Receptive and 
expressive vocabularies 

Early bilinguals < 
monolinguals 

Adults Portocarrero et al., 
2007 

COWA Semantic animal verbal 
fluency 

Monolinguals > 
bilinguals 

Adults Portocarrero et al., 
2007 

BNT Picture naming Monolinguals > 
Bilinguals 

Adults Roberts et al., 2002 

Executive functions    
Simon arrows test Inhibitory control Younger and older 

monolinguals < younger 
and older proficient 
bilinguals 

Adult Bialystok et al., 
2008 

Stroop Inhibitory control  Younger and older 
monolinguals < younger 
and older proficient 
bilinguals 

Adult Bialystok et al., 
2008 

SART Response inhibition No differences among 
proficient bilinguals and 
monolinguals 

Adult Bialystok et al., 
2008 

Working memory     
Word span task Verbal working 

memory  
Younger & older 
monolinguals > younger 
and older bilinguals 

Adult Luo et al., 2013 
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Neuro-Test Cognitive Task Significant Differences Age Study 
Corsi block test Nonverbal spatial span 

memory 
Younger and older 
bilinguals > younger & 
older monolinguals 

Adult Luo et al., 2013 

Forward digit 
recall 

Verbal working 
memory 

Bilinguals > 
monolinguals 

Children  Blom et al., 2014 

Memory     
RAVLT Verbal memory Monolinguals > 

bilinguals 
Adults Gollan & Kroll, 

2001; Kroll & 
Groot, 2005 

Visual computer 
and paper test 

Verbal memory test Monolinguals > 
bilinguals 

Adults Ransdell & Fischler, 
1987 

Face recognition  Nonverbal memory Monolinguals < older 
proficient Bilinguals 

Adult Wodniecka et al., 
2010 

Visuospatial 
working memory  

    

Dot-matrix task  Bilinguals > 
monolinguals  

Children Blom et al., 2014 

Odd-one-out tasks  Bilinguals > 
monolinguals 

Children  Blom et al., 2014 

Motor     
No studies that measure motor performance have been identified at this time 
Sensory tasks     
Audiovisual 
conditions of 
speech sounds 

Audiovisual integration  Late and early proficient 
bilinguals > 
monolinguals 

Adults Marian et al., 2018 
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CHAPTER IV: BILINGUALS COGNITIVE RECOVERY PATTERNS FOLLOWING 

AN ACQUIRED BRAIN INJURY 

Cognitive impairments are common consequences of an acquired brain injury and are 

often observed after TBI or strokes (Barman et al., 2016; Heshmatollah et al., 2020). Such 

impairments may significantly impact the patient’s social functioning and quality of life (Barman 

et al., 2016; Heshmatollah et al., 2020). While many cognitive processes may be influenced by 

an acquired brain injury, language impairments are among the most frequently reported, with 

diverse patterns found in bilingual patients. Given the complexity of cognitive impairment in 

bilinguals and the significant impact on social functioning the experience of cognitive deficits 

has on an individual, it is imperative to understand differences in bilingual recovery patterns. 

Exploring and identifying influencing factors in cognitive recovery in bilinguals will allow 

clinicians to better tailor treatment for more successful outcomes. This chapter discusses 

recovery patterns in bilinguals following a TBI and stroke while identifying how bilingual 

particularities may influence cognitive recovery. 

Bilingual Differences in Cognitive Outcome After Traumatic Brain Injury 

As mentioned in the first chapter, a TBI is an acquired injury or trauma resulting from an 

external physical force that damages the brain. A TBI can be mild, with little (i.e., a mild 

concussion) to no symptoms or moderate to severe, with major symptoms (i.e., unconsciousness, 

coma, and even death; Silver et al., 2009; Timmons, 2012). From a neuropsychological 

functioning standpoint, a mild to moderate TBI impairs memory, attention, processing speed, and 

executive functioning (Brasure et al., 2012). Moderate to severe TBIs also demonstrate deficits 

in memory, attention, processing speed, and executive functioning with additional dysfunctions 

in communication, visuospatial processing, intellectual ability, and awareness (Rabinowitz & 



 

79 

Levin, 2014). Concerning bilingualism’s influence on cognitive functioning following a TBI, 

recent studies have demonstrated greater deficits in language and executive function skills (Ratiu 

& Azuma, 2017, 2019). 

Ratiu and Azuma (2017) examined the effect of a mild TBI (mTBI) on executive 

functions and language processing in adult bilinguals using a behavioral eye-tracking measure. 

The study consisted of 22 bilinguals with a history of MTBI and 20 healthy control bilinguals. 

Each participant was administered executive functioning and language processing tasks. Results 

demonstrated that the MTBI bilingual group elicited higher rates of language processing errors 

compared to the healthy bilingual group. Significant differences were seen in the reading aloud 

task, which was driven by language control errors in the form of cross-language intrusions 

(F(1,39) = 8.3, p = 0.006,) and accent errors (F(1,39) = 6.67, p = 0.01) than the healthy controls. 

Cross-language intrusions occurred when a participant produced a word in the nontarget 

language. An accent error occurred when a participant produced the target word but used the 

nontarget language pronunciation. Results suggest bilinguals with a history of a MTBI appear to 

experience language control impairments, specifically in language switching contexts. Deficits 

were also demonstrated in executive function tasks, more specifically on the Flanker go/no go 

task (F(1,40) = 3.38, p = 0.07) and the task-switching task (F(2, 72) = 3.79, p = 0.03). 

Participants were less accurate in the switching condition than the shape condition (t (38) = 3.63, 

p = 0.001). The MTBI group also demonstrated different patterns of eye movements during a 

reading task compared to healthy control bilinguals (F(1, 39) = 14.35, p = 0.005). Healthy 

controls were less likely to fixate on error words than individuals with mTBI. Results from Ratiu 

and Azuma (2017) suggested that in addition to executive function deficits commonly associated 

with mTBI, bilinguals may also manifest language control impairments. Language errors seen in 
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mTBI bilinguals have been proposed to result from the reliance on executive function skills to 

manage or control their languages. Therefore, deficits in executive control make it difficult for 

bilinguals to control interference from the nontarget language (Green & Abutalebi, 2013). 

A more recent study examining executive function skills in bilingual adults with a history 

of mTBI demonstrated greater deficits in problem-solving and reasoning and inhibition skills 

than a healthy control bilingual group (Ratiu & Azuma, 2019). Participants included 20 healthy 

control adult bilinguals (mean age = 20.8 years, SD = 3.6) with no history of mTBI, memory, 

language or neurological problems and 22 bilingual adults (mean age= 20.1 years, SD = 3.7) 

with a self-reported history of mTBI. To measure executive function skills, all participants were 

administered the FAVRES and the Flanker task (test of inhibition). Participants included 22 

bilinguals with a history of mTBI (mean age = 21.1, SD 3.7) and 20 control bilinguals (mean age 

= 20.8, SD = 3.6). For the FAVRES assessment, the study used a 2x4 mixed-factor design with 

group as the between-subjects factor, assessment area as the repeated factor, and standardized 

scores as the dependent factor. For the Flanker task, a 2x3 mixed-factor design was utilized, with 

group as a between-subjects factor and Flanker condition as the repeated factor. The conflict 

effects in reaction time and accuracy were analyzed with one-way ANOVAs with group as the 

between subject’s factor. Results demonstrate that bilingual adults with mTBI injuries 

demonstrated higher executive function deficits on both the FAVRES and the inhibition task 

(Flaker task) when compared to the healthy controls. Performances on the FAVRES assessment 

revealed the healthy control group had significantly better performance than the MTBI group for 

accuracy (F(1, 31) =5.23, p = 0.03), rational (F(1, 31) = 7.76, p = 0.009), and reasoning (F(1,31) 

= 8.06, p = 0.008). For the Flanker test, the healthy control group had faster reaction times than 

the MTBI group (t (40) =2.67, p = 0.01; Ratiu & Azuma, 2019). Overall, the bilingual mTBI 
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group revealed decreased inhibition ability and greater difficulty in higher-order cognitive 

executive deficits when compared to healthy bilinguals. Results further demonstrate the 

FAVRES is a sensitive indicator of mTBI in a small bilingual sample, making it a potentially 

useful assessment tool with more diverse populations (Ratiu & Azuma, 2019). 

Overall, it appears that bilinguals with a mTBI demonstrate greater deficits in language 

control (i.e., switching), problem-solving, and reasoning and inhibition skills relative to healthy 

bilinguals (Ratiu & Azuma, 2019). Deficits in executive function skills such as inhibition and 

switching have been proposed to be contributing factors in the dysfunction of language control, 

which results in language errors. This is due to bilinguals’ overreliance on executive function 

skills (i.e., inhibition and switching) to manage and control the two languages (Green & 

Abutalebi, 2013). 

The next section discusses the literature on bilinguals with a history of stroke. While 

research in this area is still in its infancy (Fabbro, 2001; Faroqi-Shah et al., 2018), recent studies 

have demonstrated that bilingualism does indeed have an influence on cognitive recovery (Alladi 

et al., 2016; Paplikar et al., 2018). Differences have been seen in patterns of cognitive and 

language impairment (Paplikar et al., 2018), the severity of deficits (Alladi et al., 2016; Paplikar 

et al., 2018), and recovery patterns of translation abilities. There is also evidence of relevant 

variables to moderate recovery. Such variables include language similarity (Ansaldo & Saidi, 

2014), pre- and postmorbid level of proficiency (Kurland & Falcon, 2011; Roberts & 

Deslauriers, 1999), and the status of the cognitive control system (Abutalebi et al., 2009; 

Abutalebi & Green, 2007). 
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Bilingual Differences in Neurocognitive Patterns Following a Stroke 

As mentioned in Chapter One, a stroke occurs when the blood supply to the brain is 

interrupted or reduced due to blockage or a blood vessel that has burst in the brain (“About 

stroke,” 2020). A stroke often alters communication with its location, influencing what will be 

affected. While a variety of cognitive deficits (i.e., decreased attention, distractibility, and the 

inability to inhibit appropriate behavior; Holland & Schmidt, 2015) are often experienced, stroke 

is the most common cause of aphasia (Holland & Schmidt, 2015). Aphasia has been defined in 

the literature as an acquired language disorder that impairs the ability to formulate, retrieve, or 

decode aspects of language (Weekes, 2010). Bilingual aphasia is becoming increasingly 

frequent, as the bilingual population has increased in the United States (Ansaldo & Saidi, 2014). 

Bilingual aphasia is complex, however, and studies on the recovery trajectory following stroke 

have been mixed. Some studies have found less severe cognitive outcomes (Alladi et al., 2016; 

Paplikar et al., 2018), while others have found more severe cognitive symptoms (Hope et al., 

2015). 

Stroke Studies on the Severity of Recovery 

In a stroke cohort study, bilingualism was associated with a significantly better cognitive 

outcome in stroke patients (p < 0.0001; Alladi et al., 2016). Alladi et al. (2016) examined 608 

patients with an ischemic stroke from a large stroke registry and studied the role of bilingualism 

in predicting poststroke cognitive impairment. To perform this, subjects were compared using 

independent sample t-tests for continuous variables and χ2 test for categorical variables. A series 

of binary logistic regressions were performed to identify significant variables. Statistical analysis 

was performed using SPSS 20.0, and significance was set at p < 0.05. Bonferroni-adjusted p-

values were used to correct for multiple testing issues. This apparent protective effect is thought 
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to result from the lifelong practice of using two languages and switching between them while 

inhibiting the nontarget language (Alladi et al., 2016). 

A recent study by Paplikar et al. (2018) provided supportive evidence that bilinguals 

demonstrate less severe aphasia symptoms following a stroke. Participants in the study included 

38 bilingual and 27 monolingual aphasia patients who participated in a longitudinal hospital-

based stroke registry and were evaluated for 3 months poststroke. Performance on language and 

other cognitive functions was evaluated using Addenbrooke’s Cognitive Examination-Revised 

(ACE-R). Results were compared after accounting for confounding variables such as age, 

gender, education, occupations, and medical and stroke characteristics. Results demonstrated 

aphasia severity was significantly higher in monolinguals than bilinguals as measured by the 

language domain subscores in the ACE-R (p = 0.008; d = 0.69). Bilinguals performed 

significantly better in areas of attention (p = 0.002; d = 0.81), memory (p = 0.003; d = 0.78), and 

visuospatial skills (p = 0.004; d = 0.76). A univariate general linear model analysis also revealed 

that bilingualism was significantly associated with higher language domain scores on the ACE-R 

after adjusting for confounding variables (F(1), 63 = 9.41, p = 0.003). Results demonstrate that 

while bilingual speakers have a similar risk of developing aphasia after stroke, their aphasia is 

likely to be less severe. The authors suggest that while bilingualism does not change the risk of 

poststroke aphasia, it plays a role in influencing the severity (Paplikar et al., 2018). 

 In contrast to Paplikar et al. (2018), Hope et al. (2015) found that bilingual nonnative 

English speakers, who were immigrants, performed worse on a range of language tasks 

compared to monolinguals (t (128) = 16.24, p = < 0.001). This was even the case when 

administered in both their native and nonnative language. Participants included 174 stroke 

patient who were monolinguals (M = 53.0 years; SD = 12.2) and 33 stroke patients who were 
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bilinguals 9 (M = 49.0 years; SD = 13.2). Data were extracted from the PLORAS database, 

which associates stroke patients, tested over a broad range of times poststroke with demographic 

data, behavioral test scores from the comprehensive aphasia test and high-resolution T1-

weighted MRI brain scans. Languages in the bilingual group were diverse, with a mean of 3.3 for 

the age of acquisition. The authors from this study attributed their findings to poor premorbid 

language proficiency in bilinguals compared to monolinguals and suggested that poor premorbid 

language proficiency makes bilinguals more sensitive to lesion-deficit associations to the brain 

(Hope et al., 2015). 

 It appears that while bilinguals may demonstrate less severe cognitive symptoms 

following a stroke, it may be moderated by the type of bilingual experience (i.e., premorbid 

proficiency). Next, we discuss the types of language recovery patterns seen following injury to 

the bilingual brain and then discuss moderating variables that have been suggested to influence 

the trajectory of language recovery. 

Recovery of Translation Skills in Bilingual Aphasia 

Language deficits in bilinguals are unique, as translation disorders may affect either 

language, compromising translation from L1 to L2 and vice versa. The skill of translating is a 

cognitive task that involves not only language skills but also implements the skill of switching 

that is usually controlled voluntarily. Paradis et al. (1982) identified four types of translation 

deficits in bilinguals with aphasia: the inability to translate, paradoxical translation, translation 

without comprehension, and spontaneous translation. The translation deficit that involves the 

inability to translate refers to its obvious characteristics. Following an injury to the brain that 

affects regions involved in language, the individual is unable to translate from either language to 

the other. Paradoxical translation involves the ability to translate in one language but not the 
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other. Translation without comprehension is the ability to translate language promptly but the 

inability to understand its meaning. Last, spontaneous translation refers to the inability to inhibit 

translating, therefore, producing involuntary translations. 

Language control appears to be a role in the type and severity of language deficits seen in 

bilinguals. Green and Abutalebi (2008) noted that acquiring a second language entails the need 

to continually coordinate language use by inhibiting the nontargeted language and activating the 

language of choice (Green & Abutalebi, 2008). This language control process entails the 

constant recruitment of cognitive control functions and cognitive flexibility to properly and 

efficiently shift from one language to the other (Green & Abutalebi, 2008). Therefore, 

impairment in the ability to translate can result from deficits in the integrity of the circuits 

normally involved in language control in bilinguals. Deficits in the language control system are 

discussed further in the last section of this chapter. Cross-linguistic effects of therapy are focused 

on language recovery patterns by understanding how therapy implemented in one language 

transfers or fails to transfer to the other. It provides further insight into variables that influence 

the trajectory of recovery. 

Implications for Cognitive Rehabilitation with Bilinguals 

Cross-linguistic transfer of therapy effects focuses on understanding how implementing 

an intervention to one language transfers or neglects to transfer to the untreated language 

(Ansaldo & Saidi, 2014). Cross-linguistic transfer of therapy effects is further utilized to aid in 

identifying the most efficient procedures for triggering language recovery in bilinguals with 

aphasia (Ansaldo & Saidi, 2014). Providing therapy in both languages is often not an option, and 

thus, understanding how therapeutic interventions provided in one language transfer to the 

untreated language can help implement effective treatments. In reviewing the bilingual aphasia 
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literature, some of the identified potential influencers in greater cross-linguistic transfer of 

therapy effects depend on language similarity (i.e., word type; Kohnert, 2004; Kurland & Falcon, 

2011; Roberts & Deslauriers, 1999) pre- and postmorbid language proficiency profiles (Kiran & 

Iakupova, 2011), and the status of the cognitive control circuit (Green, & Abutalebi, 2013). 

These will be discussed further individually. 

First, word type refers to cognates, clangs, and noncognates (Ansaldo & Saidi, 2014). 

Bilingual aphasia research has provided evidence for the effects of cross-linguistic therapy in 

studies with cognates and noncognates. Cognates are equivalent words, the meaning of which 

may be identical or almost identical. An example of a cognate may include “tiger” or “tigre.” 

Noncognates are translation equivalents that share semantics but not phonology, such as 

“butterfly” in English and its Spanish equivalent “mariposa” (Ansaldo & Saidi, 2014). 

Roberts and Deslauriers (1999) demonstrated that highly proficient bilinguals with 

aphasia were able to name cognates better than noncognates. Kohnert (2004) also demonstrated 

cross-linguistic generalization of therapy effects when therapy was administered to the L1 

(Spanish) to the untreated L2 (English) for cognates only. Language treatment consisted of 

lexical-semantic retrieval strategies such as word recognition, semantic association, and cueing. 

Conversely, Kurland and Falcon (2011) found an interference effect with cognates, 

resulting in the language errors with the nontarget language, following intensive language 

therapy with a semantic approach, with Spanish-English bilinguals having chronic and severe 

expressive aphasia. However, it is important to note that the patient had a lesion in the basal 

ganglia, a component of the subcortical control network (Green & Abutalebi, 2013). Green and 

Abutalebi (2013) hypothesized that the basal ganglia, the left precentral cortex, the anterior 

cingulate, and the inferior and parietal lobule are all part of the language control network in 
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bilinguals. Therefore, damage in any portion of the language control network, such as the basal 

ganglia, can result in language control skills in bilinguals and make it more difficult for therapy 

effects to transfer to the untreated language. 

As evidenced by Roberts and Deslauriers (1999), level of proficiency also appears to 

moderate the effects of cross-linguistic therapy. Roberts and Deslauriers found that highly 

proficient bilinguals with aphasia were better able to name cognates than noncognates. Kiran and 

Iakupova (2011) further investigated the relationships among language proficiency, language 

impairment, and rehabilitation in a case study with two late-learner Russian-English bilinguals 

with a history of aphasia. Both participants were reported to be more proficient in Russian than 

English before their stroke. However, patient one demonstrated more impairment in L2 relative 

to L1 than patient two. Therefore, treatment was only given to patient one, as patient two 

demonstrated more uniform deficits in both languages. Treatment was provided in the less 

proficient language. A baseline measure was performed before treatment, and the patient 

participated in a 10-week program. There were eight treatment sessions. The sessions consisted 

of seven-step semantic feature-based treatments where the patient attempted to name the picture 

and was told if the answer was correct, the clinician named the object, the clinician placed the 

printed name of the object below the picture, the patient read a short sentence or phrase 

describing the 12 semantic features of the object, the patient sorted the pictures into piles/groups 

of correct/incorrect features, the patient was asked 12 questions regarding the features of the 

picture and the patient named the picture again. Kiran and Iakupova (2011) administered 

semantic therapy in L2 (English) to measure lexical-semantic naming difficulties. Naming was 

then measured on trained and untrained words both in L2 and L1. 
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Following therapy, the participant demonstrated 100% accuracy in both treated and 

untreated items, reflecting effective cross-linguistic therapy effects. The authors suggest that 

cross-linguistic therapy effects reflect strengthened connections between the weaker (English) 

language and the stronger (Russian) language. The post-treatment performance revealed that 

participant one performed stronger in Russian than in English. A t-test indicated that the pre-

treatment and post-treatment scores in the English subtests were significantly different (t (25) = 

−3.8, p = 0.001), suggesting improvement in the participant’s overall English auditory 

comprehension and verbal expressive abilities subsequent to treatment. Results further 

demonstrated significant differences in the participant’s Russian post-treatment scores compared 

with his Russian pre-treatment scores on the BAT (t (25) = 3.18, p = 0.004). The authors took 

this to suggest that the semantic-based treatment in English may have generalized to the patient’s 

Russian lexical-semantic abilities. It also appears that training the non-dominant language in an 

individual with bilingual aphasia may be beneficial in facilitating cross-linguistic generalization 

(Kiran & Iakupova, 2011). 

 Growing evidence has also demonstrated that the language control system plays a crucial 

role in language recovery in bilingual aphasia following a stroke. Healthy bilinguals have 

demonstrated increased involvement of the control system in language production due to the 

continual manipulation and motoring of both languages (Abutalebi & Green, 2007). Bilinguals’ 

control system involves the constant process of selecting the appropriate vocabulary and syntax 

and inhibiting the nontarget language. Concerning bilingual individuals with aphasia, Abutalebi 

and Green (2007) proposed a dynamic view among bilingual language recovery that involves the 

control system. Abutalebi and Green (2007) suggested that the pattern of language recovery in 

bilinguals with aphasia depends on the patient’s ability to select and control language activation, 
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a necessary skill in healthy bilinguals. When the language control system is damaged, bilinguals 

may experience various language impairments and recovery processes (Abutalebi et al., 2009; 

Abutalebi & Green, 2007). Parallel language recovery is one such recovery process in which 

both languages are impaired and improve to a similar extent. An antagonistic language recovery 

occurs when one language recovers to a certain extent first and then begins to regress when the 

other language begins to recover. Selective recovery of language is when one language remains 

impaired while the other recovers. Pathological language mixing occurs when the elements of the 

two languages are involuntarily mixed during language production and when languages can no 

longer be selectively inhibited (Abutalebi et al., 2009; Abutalebi & Green, 2007). 

 In a more recent study, Abutalebi and Green (2016) proposed various brain regions are 

involved in language control and that lesions in a specific brain region might cause different 

control deficits. Brain regions reported to be involved in the language control network include 

both cortical (i.e., prefrontal cortex, dorsal anterior cingulate cortex/presupplementary motor 

area, and inferior parietal cortex, with the involvement of both hemispheres) and subcortical 

regions (i.e., left basal ganglia and thalamus and right cerebellum). Among the various brain 

regions involved in language control, the basal ganglia and the left head of the caudate and 

putamen have been highlighted as playing a curial role in appropriate language selection (García-

Caballero et al., 2007). 

 Overall, bilinguals’ recovery patterns are diverse, with patterns of recovery mediated by 

various bilingual experiences (i.e., language modality, premorbid proficiency, and damage to the 

language control network). However, damage to the language control network appears to be the 

most detrimental, as it leaves bilingual individuals with language and non-language deficits and 

impedes recovery. The language network is comprised of several executive function skills that 
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are critical for performing routine activities (i.e., the frontal lobe’s involvement in thinking and 

attention for performing a sequence of tasks). Executive function skills are essential components 

for successful cognitive recovery and lay the foundation for successful cross-linguistic therapy 

effects. 
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CHAPTER V: IMPLICATIONS FOR REHABILITATION: CLINICAL PEARLS FOR 

WORKING WITH BILINGUAL CLINICAL POPULATIONS 

As indicated in the previous chapters, a combination of knowledge of the structural and 

functional patterns of bilinguals’ cognitive processes through neuroimaging data and 

neuropsychological assessments aids in creating appropriate rehabilitation treatments. Clinicians 

are better equipped to identify differences in the language processes in bilinguals, adequately 

identify deficits, predict patterns of recovery, and implement more appropriate treatment for 

successful recovery. This final chapter serves as a point of reference for the essential information 

noted in this literature review regarding bilingual individuals. 

To begin, the utilization of imaging data is a critical piece of the foundation for 

establishing correlations among lesion site and the impact on cognitive recovery patterns. The 

tables developed for the previous chapter (i.e., 2, 3, and 4) provide clinicians with information on 

identified region utilization and networks created as a result of acquiring a second language. 

Easy access to this information can further provide clinicians with possible avenues for future 

exploration. Predictions for recovery patterns can be hypothesized to gain greater knowledge on 

the bilingual language system, the areas recruited to best manage the language system, and 

potential moderating factors that may influence brain development and cognitive recovery (i.e., 

language modality and second-language acquisition across the lifespan). For example, imaging 

data have demonstrated that the caudate nucleus in bilinguals shows increased gray matter, brain 

volume (Zou et al., 2012), and activation (Crinion et al., 2006). Therefore, the brain’s plasticity 

effects in the caudate nucleus demonstrate essential involvement in managing L1 and L2. In 

bilinguals, the caudate nucleus has shown to be critical for language selection (García-Caballero 

et al., 2007) switching in bimodal bilinguals (Zou et al., 2012) and monitoring and controlling 



 

92 

language output in proficient bilinguals (Crinion et al., 2006). Concerning the profile following 

brain injury to this region, studies investigating deficits to the caudate nucleus with monolinguals 

have typically seen deficits in confrontational naming and word-finding difficulties (Pickett et 

al., 1998). Given that bilinguals utilize the caudate nucleus for language selection while 

inhibiting the nontarget language (i.e., switching) for adequate language output, injury to this 

region may result in deficits in language control and language interference in bilingual 

populations. 

In reviewing the literature, a crucial cognitive network in bilinguals that has 

demonstrated a significant impact in bilingual brain region utilization pre- and post-brain-injury 

is the language control network. Regions that have been identified to be a part of the language 

control network include both cortical (i.e., prefrontal cortex, dorsal anterior cingulate 

cortex/presupplementary motor area, and inferior parietal cortex, with the involvement of both 

hemispheres) and subcortical regions (i.e., left basal ganglia and thalamus and right cerebellum). 

Another essential point to highlight is that bilinguals’ language control network has 

demonstrated a positive impact on executive function skills. The enhancement of executive 

functions appears to result from the continual activation of bilinguals’ language control system 

(Abutalebi et al., 2009; Abutalebi & Green, 2007). Managing two languages results in the use of 

two executive function skills (i.e., inhibition and switching), suggesting continual practice using 

executive function skills. However, while continual activation has been shown to promote 

increased executive function skills in normal healthy bilinguals, executive functions appear to 

take on the greatest impact following a TBI. More severe deficits in executive functions among 

bilinguals following a TBI may be due to the critical involvement of executive functions in even 

the most routine activities (i.e., the frontal lobes involvement in thinking and attention for 
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performing a sequence of tasks) and the additional cognitive load on executive functions for the 

management of two language systems (i.e., inhibition and shifting between languages and 

translating) for effective communication. 

 Another essential piece for providing adequate treatment to bilingual individuals is a 

thorough evaluation of background information on bilingual patients’ language experience. More 

detailed information will allow clinicians to control for various language experiences (i.e., age of 

acquisition and language modality) and determine the level of impact on healthy cognitive 

functioning and dysfunction following a brain injury in bilingual populations. However, despite 

the increasing bilingual demographic and the apparent need for treatment protocols designed to 

meet the unique characteristics and needs of bilingual patients in clinical settings, there has been 

limited development of a consistent means to evaluate this population. For example, as Lorenzen 

and Murray (2008) mentioned, there are no consistent means to evaluate pre- and postmorbid 

language abilities in bilingual clients or regular use of specific interview and/or rating tools 

and/or linguistic and cognitive tests to assess bilingual clinical populations. Below are 

recommendations and potential questions clinicians can ask the patient, family member, or 

caretaker during a clinical evaluation with bilingual patients. 

Collecting Premorbid History 

§ Family members who know the patient well can serve as valuable historians that can 

provide more accurate information about the patient’s premorbid language use. 

§ Collecting history on premorbid level of proficiency, age of acquisition, usage, etc. can 

allow the clinician to establish a more accurate level of impairment. 

§ Use interpreter services if needed. Family members can only be used as a last resort, as it 

can impair the family members’ objectivity in the assessment process. 
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Assessment of Language Use History 

§ Each language should be thoroughly assessed, regardless of its level of use. 

§ Determine types of language modalities (i.e., verbal versus nonverbal). 

§ Relying on the patient’s report may cause one to miss language impairments due to the 

patient’s poor awareness that can influence making poor life choices. 

§ A complete assessment ensures an accurate picture of the strengths and weaknesses 

within each language. Reveal language deficits that are only detectable in one of the 

languages due to structural differences of the languages. 

Proper Evaluation of Deficits 

§ The clinician’s goal is to understand and identify deficits across languages to select the 

most appropriate treatment for successful recovery. 

§ Clinicians should be careful not to assume the level of bilingualism (i.e., languages are 

equally developed), as doing so can cause under- or over-reporting of symptoms. 

§ Clinicians are encouraged to administer tests designed and normed for the bilingual 

population when available, while being careful not to simply use tests that have been 

translated and not adequately normed. 

Modifications 

§ Making appropriate modifications should be considered to increase the accuracy of the 

assessment. 

§ When assessing reading and writing abilities, clinicians should consider cultural 

differences in learning academic skills. Some patients may read from opposite directions, 

which can affect an accurate assessment of severity and visual field neglects. 
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Cross-Linguistic Therapy 

§ There is evidence to support that treating the premorbid weaker language can promote 

CLTE. 

§ Cognates appear to have better CLT potential than noncognates. However, the cognate 

advantage is hindered when cognitive circuits in the language control model are 

damaged. This may be due to the reduced excitatory and inhibitory resources secondary 

to the damage in the cognitive network. 

Limitations and Future Directions 

While this review focused on identifying clinical pearls/considerations for clinicians 

working with bilingual populations, there is a considerable need for further empirical 

investigation. First, the debate persists regarding how best to quantify and qualify bilingualism 

and other linguistic concepts unique to bilingual speakers (e.g., early versus late; simultaneous 

versus sequential). The unique characteristics among bilingual speakers are important to consider 

when defining bilingualism and exploring differences in language development. Therefore, 

adopting a definition that accounts for the diverse backgrounds is still in need of development. 

Collecting background data on the unique characteristics, such as style of acquisition (i.e., 

simultaneous versus sequential) and age of acquisition (i.e., early versus late), among bilingual 

populations allows clinicians to rule out confounding variables that influence significant 

findings, identify patterns of brain and cognitive development, and identify potential influencers 

in cognitive recovery following a TBI or stroke. However, while stroke and TBI are among the 

most prevalent acquired brain injuries, they are not the only brain injures bilinguals can 

experience. Given that the type of brain injury can impact recovery trajectories, there is a need 
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for further research exploring recovery profiles in bilinguals who experience other types of 

acquired brain injuries. 

Identifying and establishing more demographically appropriate neuropsychological tests 

to measure bilingual cognitive performance pre- and post-brain-injury is also an area lacking 

research. A large portion of neuropsychological tests are normed toward measuring monolingual 

brain function and dysfunction. Therefore, they are not appropriate measures to use on bilingual 

populations. 

It is evident from a limited number of published bilingual aphasia treatment studies that 

research on bilingual cognitive recovery is still in its infancy and in need of considerable 

systematic research. Investigations of bilingual aphasia and TBI treatment outcomes are of 

clinical importance to gain further insights into cognitive and language representation. For 

example, lesion-deficit correlations hold the potential for refining neuroanatomical models of 

bilingual language representation. Associations between language recovery and lesion 

characteristics can contribute to the understanding of rehabilitation-dependent neural plasticity. 

There have also been mixed results in the literature regarding the length of recovery and 

cognitive areas most often affected. Potential contributors to the mixed results could result from 

relatively weak study designs (e.g., case descriptions, small group designs) and not controlling 

for potential confounding variables. Variables that have been identified as significant mediating 

or moderating factors have not always been consistently controlled for in studies across the 

literature. Such factors include but are not limited to early versus late bilingualism, differing 

levels of premorbid levels of proficiency, and simultaneous versus sequential language learning. 

Few bilingual studies with children were also identified. This may be due to children’s 

sensitive developmental phase compared to adults and older adults, making this population more 
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complex to evaluate. Therefore, researchers are encouraged to include how aspects of children’s 

developmental phase impact the acquisition of a second language while performing longitudinal 

studies that follow children’s changing and developing cognitive processes along with the 

language development of acquiring a second language. 
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